

H.S.Kim¹, ** D.H. Kim(dhkim@hysco.com)¹, K. S. Kim¹

Key words: Hotstamping, FEA simulation, B Pillar

1.						
Oil 가	, Co2		Fig.1 가		,	가
new generation of vehicles)	PNGV(Partnership fo 1 34km 3 100km	Hala	가 ,	가	가 가	, trim
, Highway Safety:	FMVSS, I , IIHS(Insurance Institute) RCAR(Research Council	for 950	. , 93	930 30 가	가 가 가	. 가 , 가
Automobile Repairs)		. 050	. , 30	,		71
, (Hydroforming),		· 850 Γube WB)		3.		
(Hotstamping)						가
. , 350 ~ 590Mi	Pa 850 가		가 가 ,	, 가	, 가	가 가
1,500Mpa . 30~50%	가 1,350 가 ,) ~	. 4	. FEA Model		
,	pringback		Punc Blank Holder			Blank
가 ,	,	가	Dialik Trouber			Die
Pillar		В		Fig. 2 FEA Mod	lel	
,			FEA Model	Hypermesh		Mesh
2.			·	. (Fi	g.3)	
			(Heat Capacity), (Expansion		ermal Cond	uctivity),

Fig. 1 Hotstamping Process

Table.1

Fig.4



Fig. 3 Punch Closing Time

Table 1 FEA Simulation Factors

Table 11 L/1 Simulation 1 actors						
Blank Thickness	1.2t					
Mesh	184,26					
Holding Gap	0.3					
Friction Coef.	0.125					
Heat Capacity	4.86e+5 (J/Ton)					
Thermal Conductivity	5.19e-2(W/mm)					
Mechanical Equivalent of Heat	1e-3					
Punch Moving (mm)	100					
Holding Gap (mm)	0.3, 0.5					
Die Temperature	20 (Prototyping base)					
Blank Temperature	850					

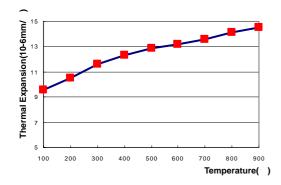


Fig.4 Thermal Expansion Rate

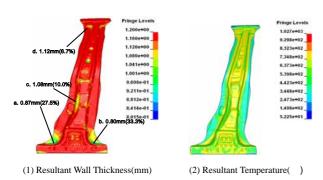


Fig.5 Simulation Result

Crack

500 ~ 700

6.

Fig.6

ProtoTyping Sample	Minimum Thk.(mm)	Thinning (%)	Remark		
眉	1.16	3.3	T		
	1.17	2.5	Thickness Distribution		
	1.13	5.8	1.13 · 1.2mm		
	0.90	25.0	Crack Occurred during prototyping		

Fig.6 Prototyping Result

7.

- Arthur B.Shapiro, "LS_Dyna Features for Hot Stamping", 9th International LS-Dyna Users Conference
- Arthur B.Shapiro, "Teat Transfer in LS_Dyna", 5th European LS_Dyna Users Conference
- H.Hoffmann, H.So, H.Steinbeiss, "Design of Hot Stamping Tools with Cooling System", Annals of the CIRP vol. 56, Jan. 2007
- A.Turetta, S.Bruschi, A.Ghiotti, "Investigation of 22MnB5
 Formability in Hot Stamping Operation", Journal of Material
 Processing Technology 177 396~400, 2006