퍼지추론 기반 Polynomial RBF Neural Network 설계와 얼굴 인식으로의 적용

The Design of Polynomial RBF Neural Network based on Fuzzy Inference and Its application to Face Recognition

  • Kim, Gil-Sung (Dept. of Electrical Engineering, The University of Suwon) ;
  • Lee, Kyung-Hee (Dept. of Electrical Engineering, The University of Suwon) ;
  • Oh, Sung-Kwun (Dept. of Electrical Engineering, The University of Suwon)
  • 발행 : 2008.07.16

초록

본 연구에서는 퍼지 추론 메커니즘에 기반 한 Polynomial RBF Neural Network(p-RBFNN)를 설계하고 얼굴인식 문제로 적용하여 분류기로서의 성능을 분석한다. 제안된 p-RBFNN 구조는 FCM 클러스터링에 기반 한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. p-RBFNN 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 또한 제안된 p-RBFNN을 얼굴인식 문제로 적용하여 성능을 분석한다.

키워드