영구자석의 overhang 길이 및 skew 효과를 고려한 LSM 추력함수 도출

표세호, 이동엽, 장기봉, 김규탁 창원대학교 전기공학과

A Elicitation of Polynomial Equation of Thrust Coefficient for Linear Synchronous Motor by Experimental Design Method

Se-Ho Pyo, Dong-Yeup Lee, Ki-Bong Jang, Gyu-Tak Kim Changwon National University Electrical Engineering

Abstract - 본 논문은 900[N]급 PMLSM에서 영구자석의 오버행과 스 큐가 고려된 모델의 추력을 손쉽게 구할 수 있는 추력방정식을 도출하 였다. 추력에 영향을 미치는6개의 설계변수(공극, 치 길이, 영구자석의 폭과 높이, 영구자석 오버행 및 스큐의 길이)를 선정하여 추력방정식을 도출하였으며, 3차원 유한 요소 해석을 통한 해석치와 실험치를 비교 분 석하여 타당성을 확보하였다.

1.서 론

Linear Synchronous Motor(LSM)은 영구자석과 치-슬롯 구조의 상대 적인 위치변화에 따라 디텐트력이 발생하게 된다. 디텐트력은 LSM의 운전 시 추력의 리플로 작용하여 운전특성을 크게 저하시킨다. 그러므로 추력의 리플성분인 디텐트력을 저감시키기 위하여 영구자석 또는 전기 자 철심에 스큐를 시행하는 방법, 영구자석의 폭 조절법, 전기자 슬롯의 형상 변화 등 많은 기법들이 적용되고 있다. 이 기법들 중 영구자석에 스큐를 시행하는 방법이 널리 사용되고 있다. 영구자석에 스큐를 시행하 면 디텐트력을 크게 저감 시킬 수 있으나, 발생 추력 또한 감소하게 된 다. 그러므로 영구자석에 스큐를 시행 할 경우, 저감 된 발생추력을 보 상하기 위하여 철심길이보다 영구자석의 축 방향 길이를 더 크게 하는 방법, 즉 영구자석에 오버행을 시행하는 방법이 많이 사용된다[1].

재질의 비선형 및 형상의 복잡성을 쉽게 고려 할 수 있는 유한요소 해석이 전기기기 특성 해석에 널리 사용 되고 있다. 영구자석에 스큐와 오버행이 동시에 시행 된 모델의 경우 2차원 유한요소 해석을 통해서는 정확한 해석을 할 수 없기 때문에 3차원 유한요소해석을 반드시 수행하 여야 한다. 하지만, 3차원 유한요소해석의 경우, 해석의 정확성을 얻을 수 있지만, 고성능의 하드웨어, 계산 시간의 증대 등의 단점을 지니게 된다. 따라서 본 논문에서는 3차원 유한요소 해석을 통하지 않고, LSM 의 발생 최대 추력을 설계변수에 따라 계산 할 수 있는 추력 방정식을 도출 하였다[1][2]. 추력 방정식의 도출을 위해 설계 변수로는 LSM의 공극의 자속밀도에 영향을 주는 공극 길이(l_{s}), 영구자석의 폭(W_{pm}), 높 이(l_{pm}), 스큐 길이(l_{skew}), 오버행 길이(l_{oh}), 치의 축 방향(W_{core}) 길이를 선정하였다. 각 설계 변수에 따른 추력의 변화 특성을 3차원 유한요소 해석을 통하여 획득하였으며, 각 변수에 가중치를 고려하여 추력방정식 을 도출 하였다.

2. 해석모델 및 특성해석

2.1 해석모델

그림 1과 표 1은 해석모델인 900[N]급 LSM의 시작기와 사양을 나타 낸 것이다.

(b) 기본모델 영구자석 배열 (c) 스큐-오버행 모델 영구자석 배열 **〈그림 1〉 시작기**

	Item	Symbol	Value(unit)
Stator	자속 밀도	B_r	1.36 (T)
	영구자석 높이	lpm	9.0 (mm)
	영구자석 폭	W_{pm}	26.5 (mm)
	극 간격		30 (mm)
	영구자석 스큐 길이	l _{skew}	0 (mm)
	영구자석 오버행 길이	loh	0 (mm)
Mover (Armature)	턴수		304
	치 높이	h_t	16.95 (mm)
	치 길이	W _{core}	93 (mm)
	치의 축방향 길이	Wt	14 (mm)
	슬롯 간격		40 (mm)
	정격 전류	Ι	6.53 (A)
	공극 길이	l_g	1.4 (mm)

2.2 특성해석

〈표 1〉 시작기 사양

그림 1 (b)는 기본모델의 영구자석 배열이고, 그림 1의 (c)은 기본모 델의 디텐트력을 저감시키기 위하여 스큐를 10 [mm] 시행하고, 스큐 시 행으로 저감 된 추력을 보상하기 위하여 4 [mm] 오버행을 시행한 스큐 -오버행 모델의 영구자석 배열이다. 그림 2는 두 모델의 자속밀도이다.

(a) 기본모델 자속밀도

2.3 실험 및 해석 결과 비교

LSM의 추력 실험은 LSM의 추력과 디텐트력이 동시에 나타날 수 있 도록 전기자에 정격전류를 인가시키고, 리니어 엔코더를 이용하여 이동 자를 이동시키며 측정하였다. 로드셀(model:CAS,SBR-200L)은 고정자와 고정된 지지대 사이에 설치하여, 발생 된 추력이 로드셀과 증폭기를 이 용하여 전압이 출력 되도록 하였다. 이때 출력 전압은 추력이 20[kg] 일 때 증폭기 출력 전압이 1[V]가 되도록 설정하였으며, 전기자 전원은 6.53[A] 교류의 실효치를 고려하여 A상 9.23[A], B상 -4.615[A], C상 -4.615[A]의 고정된 직류를 인가하였다. 리니어 엔코더를 이용하여 1[mm] 간격으로 이동시키며 반복 측정하였다.

디텐트럭의 측정은 추력의 측정방법과 동일하며, 이때 전기자 전원이 없는 상태로 측정하였다.

<그림 3> 디텐트력 및 고조파 분석

그림 3은 기본모델과 스큐-오버행 모델의 디텐트릭 특성을 비교한 것 이다. 기본모델의 68.3[N]에서 스큐-오버행 모델 23.3[N]으로 스큐의 시 행으로 디텐트럭이 65.9[%] 크게 감소하였다. 기본모델의 경우 실험치와 해석치에 오차가 발생하였다. 이는 1[mm]씩 이동자의 변위를 이동 할 경우, 디텐트럭의 변화가 커 실측이 힘들기 때문이다. 스큐-오버행 모델 의 경우 이론치와 실험치가 일치하는 양호한 결과를 얻었다.

그림 4는 두 모델의 실험치와 해석치를 비교한 것 이다. 기본모델의 경우, 최대 추력의 해석치는 899.99[N}, 실험치는 896.51[N]이다. 스큐-오버행 모델의 해석치는 898.82[N], 실험치는 895.67[N]이다. 두 모델의 해석치와 실험치의 크기 및 주기가 일치하는 양호가 결과를 얻었다.

해직지와 실업지의 그기 및 두기가 일지하는 양오가 결과를 얻었다. 기본모델의 경우 디텐트력의 영향으로 인해 추력의 왜형률이 6.25[%]로 나타나고, 스큐-오버행 모델의 왜형률은 2.75[%]로 추력 파형이 깨끗하 게 출력됨을 확인 할 수 있다. 이는 디텐트력에 영향을 주는 2,5,6 고조 파가 스큐의 시행으로 인해 5.6 고조파가 제거 되어 디텐트력의 영향이 크게 저감 되었기 때문이다. 하지만 완변하게 제거 되지 못한 이유는 이 동자의 단부효과로 인해 발생 되는 디텐트력의 2고조파는 스큐에 의해 서 제거 되지 않기 때문이다.

3. 추력방정식 도출

3.1 설계변수

추력 방정식의 도출을 위해 설계 변수로는 LSM의 공극의 자속밀도에 영향을 주는 공극 길이(l_g), 영구자석의 폭(W_{pm}), 높이(l_{pm}), 스큐 길이 (l_{skew}), 오버행 길이(l_{oh}), 치의 축 방향(W_{core}) 길이를 선정하였다. 그림 5 와 표 2는 설계변수와 설계변수의 가변길이를 나타낸다.

〈그림 5〉 설계변수 〈표 2〉 설계변수 가변길이

Item	Symbol	Variable range(mm)	
영구자석 높이	<i>l</i> _{pm} 8 - 10		
영구자석 폭	W_{pm}	25.5 - 27.5	
영구자석 스큐 길이	lskew	0 - 20	
영구자석 오버행 길이	loh	0 - 4	
치 길이	W _{core}	91 - 95	
공극 길이	l_g	0.6 - 2.2	

3.2 설계변수에 따른 최대 추력 특성

그림 6은 3차원 유한요소 해석을 통해서 각 설계변수의 변화에 따른 최대추력의 변화 양상을 나타내었다. 6개의 설계변수 중 공극의 길이와 스큐의 길이가 LSM의 최대추력에 가장 큰 영향을 미치는 것을 확인 할 수 있다. 상대적으로 자석의 높이와 폭은 최대 추력에 크게 영향을 미치 지 않는 것을 확인 할 수 있다.

<그림 6> 설계변수에 따른 최대추력

3.3 추력방정식

그림 6의 설계변수에 따른 최대추력의 양상을 통해서 각 설계변수의 가중치를 고려하여 부분실시법에 근거한 직교배열을 이용하여 실험계획 법인 다구찌법에 의해 실험 수식을 도출하였다.

$$F = \frac{[18.537 \times 1.005 \xrightarrow{\frac{26.5l_{pm}}{W_{pm}}} \times (1.35l_{oh} + W_{core}) - 6.59 \times 1.25 \xrightarrow{\frac{l_{skew}}{5}} \times l_{skew}]}{[0.3234l_g + 1.55]}$$

표 3은 도출 된 추력 방정식을 통해 계산 된 최대추력과 3차원 유한 요소 해석을 통한 해석치를 비교한 것으로, 오차가 크지 않음을 확인 할 수 있다.

<표 3> 3차원 유한요소 해석치와 추력방정식을 이용한 계산치 비교

Items [mm]					Peak Thrust[N]		
l_g	l _{pm}	l_{oh}	W_{core}	W_{pm}	l _{skew}	FEA	Equation
0.6	9	0	93	26.5	0	1032.63	1033.86
2.2	9	0	93	26.5	0	796.22	797.30
1.4	8.5	0	93	26.5	0	895.80	898.06
1.4	9	2	93	26.5	0	930.29	926.44
1.4	9	4	93	26.5	0	951.13	952.58
1.4	9	0	95	26.5	0	920.40	919.66
1.4	9	0	93	25.5	0	898.84	901.89
1.4	9	0	93	26.5	5	882.41	879.74
1.4	9	0	93	26.5	20	734.42	739.65
1.4	9	4	93	26.5	10	898.82	901.16
1.4	9	0	93	26.5	25	648.91	649.26
0.6	9	0	93	26.5	10	979.70	974.81
1	9.5	2	92	27	5	957.93	959.66
1	9	0	93	26.5	15	853.81	859.41
1.8	9	0	93	26.5	5	830.40	826.36
1.8	9	3	93	26.5	15	795.44	791.96

3. 결 론

LSM의 디텐트럭을 줄이기 위해서 스큐와 오버행을 시행한 모델의 특 성해석을 위해서 3차원 유한요소 해석을 수행 해야한다. 3차원 유한요소 해석 시 고성능의 하드웨어와 오랜 해석시간이 필요한 단점을 줄이기 위해서 설계변수를 선정하여, 설계변수에 따른 추력방정식을 도출 하여 설계변수를 이용하여 LSM의 최대추력을 쉽게 구할 수 있다.

[참 고 문 헌]

[1] In-Cheol Hwang, Ki-Bong Jang and Gyu-Tak Kim, " A study on the characteristics analysis according to overhang and skew of permanent magnet in PMLSM", IEEE Trans. *Electrical Machines and System,2007. ICEMS, International Conference on*, pp1255-1258, Oct.2007

[2] Ki-Chan Kim and Ju Lee, "A Study on the Overhang Coefficient for the Design and Analysis of Permanent Magnet Machine by simulation DOE", *IEEE Trans. Magnetics.*, Vol.43, No.6, pp.2483-2485, June. 2007