A-2

홍화종자에서 항산화성 Serotonin계 화합물, N-(p-Coumaroyl)serotonin과 N-Feruoylserotonin의 분리 및 정량분석

전북대학교 농업생명과학대학 : 이강수, 김윤희1), 정남진

Determination and isolation of antioxidative serotonin derivatives, N-(p-Coumaroyl)serotonin and N-Feruoylserotonin from safflower seeds

College of Agriculture & Life Science, Chonbuk National University, Chonju 561-756, Republic of Korea

Kang-Soo Lee, Yun-Hee Kim*, Nam-Jin Chung

연구목적

본 연구는 홍화종자에 함유된 DPPH radical 소거 활성물질인 N-(p-Coumaroyl)serotonin과 N-Feruoylserotonin을 간편하게 확인하여 분리● 동정하고, 보다 정밀한 분석조건을 제시하고자 실시하였다.

재료 및 방법

- 실험재료 : 홍화 종자는 전북대학교 농장에서 2007년 3월 15일에 파종하고 7월 10일에 수확하였으며, 50℃에서 2일간 건조하여 화합물 성분분석에 이용하였다.
- 실험방법 : 홍화 종자 20g에 HPLC용 methanol 200㎡를 가하여 50℃에서 24시간 진탕한 후 감압 농축하였다. 감압 농축한 시료를 n-Hexane, Chloroform, EtOAc, BuOH, Water 로 순차적으로 분획하여 DPPH radical 소거능을 측정하였다.

성분분석은 영린 HPLC 기기를 이용하였으며, Column 은 μ -Bondapak C_{18} column(3.9 x 300mm), 유속은 1ml/min , 온도는 30 $^{\circ}$, 파장은 300nm로 측정하였다. 용매는 acetonitrile과 0.05%인산용액을 이용하여 gradient 법으로 용출시켰다.

결과 및 고찰

홍화종자의 메탄올 추출물에서 확인된 항산화물질의 대량 추출을 위하여 hexane, chloroform, ethyl acetate 그리고 butanol 등의 유기용매를 이용하였으며 이 중 ethyl acetate 분획에서 DPPH radical 소거 활성이 높은 물질이 추출되었다. Ethyl acetate 분 획물을 silica gel chromatography하여 그림1의 CA와 CB를 분리하였고, ¹H-NMR과 ¹³C-NMR 분석에 의하여 CA는 N-(p-Coumaroyl)serotonin, 그리고 CB는 N-Feruoylserotonin 으로 동정되었다. 홍화종자에서 N-(p-Coumaroyl) serotonin과 N-Feruoylserotonin의 함 량을 μ-Bondapak C₁₈ column(3.9 x 300mm)으로 300nm에서 acetonitrile의 용매로 10% 에서 분석을 시작하여 30분 동안 50%까지 기울기 모드로 결과 N-(p-Coumarovl)serotonin의 함량은 4.11mg/gDW, N-Feruoylserotonin의 7.29mg/gDW이었으며, 이 두 가지 항산화물질은 모두 종자껍질에서만 추출되었다.

¹⁾ 주저자 연락처(Corresponding author): 김윤희 E-mail:sky3884@naver.com Tel: 010-2749-3884

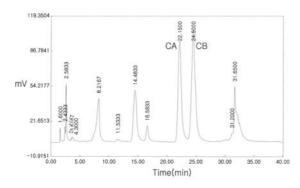


Fig. 25. Preparative HPLC chromatogram of the methanolic extract of safflower seeds. HPLC condition: column, μ -Bondapak C_{18} column(7.8 \times 300mm); solvent, 35% methanol; flow rate, 3ml/min; detection, 300nm

Table 1. DPPH radical scavenger activity and relative ratio of HPLC peak area in each solvent fraction from safflower seeds

Fraction	DPPH radical	Relative ratio of Preparative HPLC peak area(%)	
	scavenger activity(%)	CA (22.2 min peak)	CB (24.5 min peak)
MeOH Extract	94.8	100	100
Hexan Fr.	4.3	0	0
Chloroform Fr.	14.3	0	4.2
Ethyl acetate Fr.	94.5	81.8	75.1
Butanol Fr.	43.4	8.3	7.8
Water Fr.	10.6	0	0

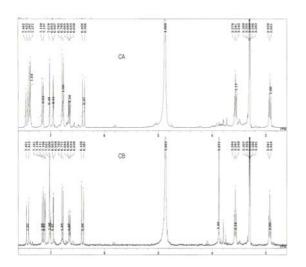


Fig. 2. ¹H-NMR spectra(600.17 MHz) of CA and CB isolated from safflower seeds

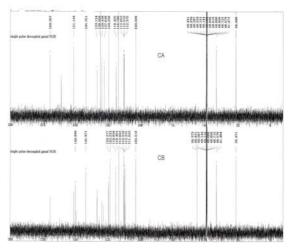


Fig. 3. ¹³C-NMR spectra(150.92 MHz) of CA and CB isolated from safflower seeds

Table 2. Contents of N-(p-Coumaroyl)serotonin and N-Feruoylserotonin in safflower seeds

Serotonin derivatives	Contents(mg/g seeds)			
	Whole	Hull	Kernel	
N-(p-Coumaroyl)serotonin	4.11	4.45	0	
N-Feruoylserotonin	7.29	8.34	0	