∏-32

Protective effect of a plants extract complex (SSB) against Amyloid β Protein (25-35)-induced neurotoxicity

Joo Youn Kim¹, Hyun Soo Ju¹, KiHwan Bae², Kyung-sik Song³ and <u>Yeon Hee Seong^{1*}</u>

¹College of Veterinary Medicine, Chungbuk National University,

²College of Pharmacy, Chungnam National University,

³College of Agriculture and Life-Sciences, Kyungpook National University

Amyloid β Protein (25-35)에 의해 유도된 신경독성에 대한 식물 추출물 복합제 (SSB)의 보호효과 충북대학교: 김주연, 주현수, <u>성연희</u>* 충남대학교: 배기환 경북대학교: 송경식

Objectives

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive ability and by neuropathological features including senile plaque, neurofibrillary tangles and neuronal loss in selective brain regions. Amyloid β protein (A β) or A β peptide fragments have been suggested to play an important role in the pathogenesis of AD. A β -induced neurotoxicity is accompanied by increase of cytosolic Ca²⁺ concentration ([Ca²⁺]_c) and generation of reactive oxygen species(ROS). In the present study, we investigated the protective effect of ethanol extract of plants extract complex (SSB) against A β (25–35)-induced neurotoxicity in cultured neurons and memory impairment in mice.

Materials and Methods

Materials

SSB (three plants extract complex including Aralia Cordata), Beta amyloid protein (A β) (25–35), SD rats, ICR mice

Methods

Neuronal cells, cultured from 16-day-old fetus of SD rats, were treated by A β (25-3 5). Viability of cultured neurons was measured by 3-[4,5-dimethylthiazole-2-y1]-2,5-di phenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. A β (25-35)-ind uced elevation of the $[Ca^{2+}]_c$ and generation of reactive oxygen species (ROS) were m easured by fluorescence dyes using laser scanning confocal microscopy. A β (25-35)-in duced memory impairment in mice was examined using passive avoidance test.

Corresponding author : 성연희 E-mail: <u>vepharm@chungbuk.ac.kr</u> Tel.: 043-261-2968

Results and Discussion

SSB (1–30 µg/ml) inhibited A β (25–35)-induced elevation of $[Ca^{2+}]_c$, ROS generation and neuronal cell death. These results suggest that SSB may ameliorate A β (25–35)-induced neuronal cell death by interfering $[Ca^{2+}]_c$ increase and inhibiting ROS generation. Chronic administration of SSB (10–50 mg/kg, 8days) markedly improved memory impairment induced by intracerebralventricular injection of A β (25–35) in mice without affecting general motor function. In conclusion, the present study provides the pharmacological basis of SSB as a promising agent for the treatment of neurodegeneration in AD.

Fig 1. Protective effect of SSB against A β (25–35)-induced neuronal cell death measured by MTT assay.

Fig 2. Protective effect of SSB against A β (25–35)-induced memory impairment in passive avoidance test.