II - 26

Corydalis turtschaninovii의 근경에서 분리한 pseudocoptisine의 항염증 효과 및 기전 연구

경희대학교 약학대학 약품생화학교실 : 신지선, <u>이경태*</u> 경희대학교 생명공학원 및 식물대사 연구센터 : 백남인 강화 농업 R&D 센터 : 정해곤

Anti-inflammatory effects and its molecular mechanism of pseudocoptisine isolated from tuber of *Corydalis turtschaninovii*

^aDepartment of Pharmaceutical Biochemistry, College of Pharmacy, ^bGrauate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University ^cGangHwa Agricultural R&D Center

Ji-Sun Shin^a, Nam-In Back^b, Hae-Gon Chung^c, Kyung-Tae Lee^{a*}

Objectives

In this study, we have made attempt to screen anti-inflammatory effects of psedocoptisine, one of the active compound isolated from the tuber of *Corydalis turtschaninovii*, and understand the molecular mechanism using an *in vitro* medel system of mouse macrophage Raw 264.7 cells.

Materials and Methods

Materials

Pseudocoptisine isolated from the tuber of *Corydalis turtschaninovii* (Papaveraceae) and were determined by HPLC to be > 97 % pure. The Raw 264.7 macrophage cell line was obtained from the Korea Cell Line Bank (Seoul, Korea).

Methods

To determined the effect of pseudocoptisine on NO production, nitrite levels in culture media were determined using the Griess reagent assay. Levels of PGE₂, TNF- α , IL-6 in culture media were quantified using R&D System EIAs kits. Western blot and reverse transcriptase polymerase chain reaction (RT-PCR) were examined to determine inflammation-related protein and mRNA levels. Electrophoretic mobility shift assay (EMSA) and luciferase assay were performed to measure the effect of psedocoptisine on DNA binding and transcriptional activity of nuclear factor-kappa B (NF- κ B).

Corresponding author: Kyung-Tae Lee E-mail: ktlee@khu.ac.kr Tel: 02-961-0860

Results

We have demonstrated that pseudocoptisine can potentially supress LPS-induced NO, PGE₂, TNF-α and IL-6 productions, iNOS and COX-2 protein and mRNA levels, and TNF-α and IL-6 mRNA levels by inhibiting the binding activity and transcriptional activity of transcription factor NF-κB. And pretreatment of pseudocoptisine prevented IκBα phosphorylation and degradation. Moreover, pseudocoptisine suppressed phosphorylation of ERK and p38 but not JNK. These results suggest that the anti-inflammatory properties of pseudocoptisine might be due to the inhibition of NF-κB activation through IκBα and MAPK dependent signalling pathway and it lead to reduction of pro-inflammatory expression such as iNOS, COX-2, TNF-α and IL-6.

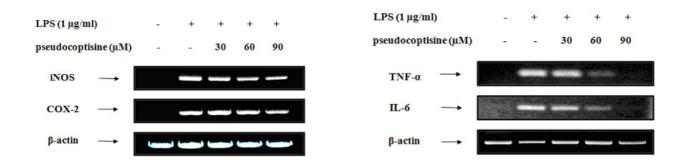


Fig 1. Effect of pseudocoptisine on iNOS, COX-2, TNF-α and IL-6 levels in LPS-stimulated Raw 264.7 cells.

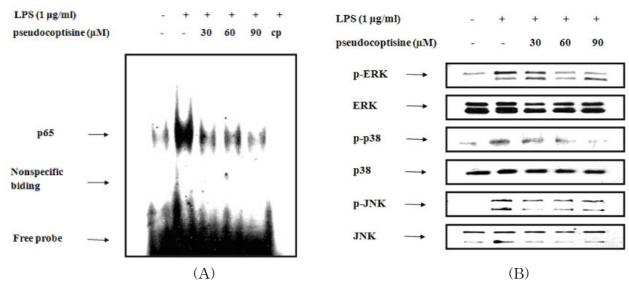


Fig 2. Effect of pseudocoptisine on NF-κB DNA binding activity (A) and MAPKs phosphorylation (B) in LPS-stimulated Raw 264.7 cells.