II-10Investigation on antioxidant and liver protecting effects of *Lythrum salicaria*

Seung-Eun Lee¹⁺, Geum-Sook Kim¹, Tae-Jin Ahn¹, Chun-Geun Park¹, In-Bok Jang¹, Yeong-Deuk Son¹, Ji-Gang Kim¹, Sun-Woo Cha¹, Ho-Ki Park¹, Jin-Ki Bang², Nak-Sul Seong¹

¹Department of Herbal Crop Research & ²Bioenergy Crop Research Center, RDA, Korea

Objectives

The study was conducted to evaluate plant parts of *Lythrum salicaria* on antioxidant or liver protective activities.

Materials and Methods

- Materials : Plant parts of *L. salicaria* including aerial part, flower and root, were collected in the medicinal crop farm of RDA in 2002 and 2003.
- Methods
- Preparation of extract was conducted by extraction procedure with methanol for *in vitro* assay and with ethanol for *in vivo* assay. Evaporation of the solvent in extracts was conducted under vacuum atmosphere.
- Antioxidant activities on DPPH, superoxide anion, linoleic acid, and total phenol content were evaluated by the methods of Lee *et al.* (2005), Nishikimi *et al.* (1972), Takao *et al.* (2002), and Kim *et al* (1993), respectively.
- Animal and treatment : Sprague Dawley male rats were intoxicated with carbon tetrachloride (1:1 of CCL4 and olive oil, 2g/Kg body weight) three times for 2 weeks. Experiment groups were composed of Normal (basal diet), carbon tetrachlorde (CCL₄) single treated, 1% silymarin added diet plus CCL₄, 1% *L. salicaria* flower extract (LSF) plus CCL₄ and 1% *L. salicaria* root extract (LSR) plus CCL₄ groups, Hepatic TBARS and GSH content, antioxidant enzyme activity including Mn-SOD, CAT, GSH-px, GST, and liver health parameter serum GOT and GPT activity were evaluated.

[†]Corresponding author : Seung-Eun Lee <u>lse1003@rda.go.kr</u> Tel : 043-871-5586

Results

Extracts of *L. salicaria* root, flower and aerial part of showed effective *in vitro* antioxidant activities on DPPH, superoxide and linoleic acid peroxidation, but root and flower parts showed stronger activities than aerial part. Treatment with root extract of *L. salicaria* (LSR) showed significantly effective inhibitory activity on lipid peroxidation product induced by CCL4 and significantly alleviated the increase of GOT activity. From the results, we have a suggestion that three parts of *L. salicaria* have antioxidant and liver protecting activities and root part is the most effective candidate to develop a new functional material.

Table 1. In vitro antioxidant effect and total phenol content of L. salicaria extracts according to collected parts

	Flower	Aerial part	Root
Scavenging effect on DPPH radical (IC ₅₀ , $\mu g/m\ell$)	10.0±0.0b	18.3±1.1a	7.7±0.1c
Scavenging effect of superoxide radical $(\%)^{1)}$	71.2±0.1b	55.6±0.4c	75.0±1.3a
Inhibition effect on linoleic acid oxidation $(\%)^{2}$	78.4±2.1a	82.7±1.4a	76.2±5.6a
Total phenol content(%) ³⁾	19.9±0.6a	18.4±0.4b	20.5±0.3a

Data are mean \pm SD values (n=3). Values with different superscripts in the same row are significantly different at P<0.05

 $^{1),\ 2)}$ Final concentration was 50 and 10 g/ml, respectively

³⁾ Content show as tannic acid equivalent

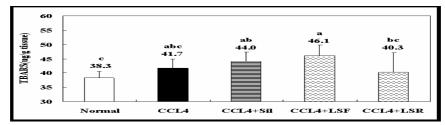


Fig. 1. Effect of flower (LSF) and root extract (LSR) of *L. salicaria* on the content of liver lipid peroxidation product (TEARS) in CCL₄-intoxicated rat.

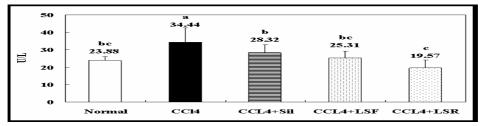


Fig. 2. Effect of flower (LSF) and root extract (LSR) of *L. salicaria* on the activity of serum GPT (U/L) in CCL₄-intoxicated rat.