I-13 유기 재배된 황기의 생장 특성과 생산성 및 유기물 부숙화와 양분가용화 속도

충북대학교*. 국립원예특작과학원**

윤명렬*, 연제진*, 김영국**, 안영섭**,박호기**, 송범헌*

Rates and Velocities of Decomposition and Mineral Solubilization of Organic Fertilizers and Growth Characteristics and Production of Astragalus membranaceus Bunge Grown with Organic Farming

Chungbuk National Univ.*, National Institute of Horicultural and Herbal Science** Myeong-Yeol Yoon*, Jae-Jin Yeon*, Young-Guk Kim**, Young-Sup Ahn**, Ho-Ki Park**, and Beom-Heon Song*

연구목적

약효성분을 함유하는 약용작물들은 오랜 역사를 통하여 산과 들에서 채취하여 오다가 인류문화 및 농업기술의 발전과 함께 재배되어 오고 있다. 약용작물의 화 학비료와 농약들을 사용하는 인위적인 재배로 인해 생산성은 증대된 반면에 품질 성은 현저히 떨어졌다고 볼 수 있다. 본 연구는 유기 약용작물의 재배기술 개발의 일 환으로 황기를 유기질 비료 와 시비량을 각각 달리하여 재배하면서, 유기질 비료의 부숙 화 및 양분가용화량을 조사 분석하고, 이에 따른 황기의 시기별 생장반응과 생산성을 조 사 분석함으로써 약용작물의 유기재배기술의 기초 및 응용자료를 얻고자 수행 하였다.

재료 및 방법

<시험1>유기질비료의 부숙 및 양분가용화 속도 ㅇ 공시재료

- -유기질비료: 유기질비료 I, 유기질비료Ⅱ
- -유기질의 질소함량 : 유기 I (1.77%), 유기 II (3.14%)

ㅇ 처리내용

- -처리시기 : 파종 전 14일(파종일 : 4월 30일)
- 처리 후 시료채취는10일 간격으로 5회, 20일 간격으 기준하여 황기의 질소추천시비량에 100, 150, 로 3회 채취
 - * Pack제작 : 300目/mesh, 가로10 X 세로20cm

ㅇ 조사내용

- -건물중 및 부숙화 속도
- -주요무기영양성분의 가용화 속도 및 량

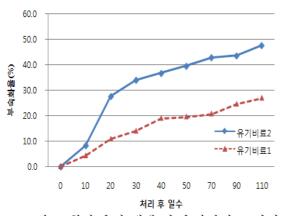
<시험2>유기재배 황기의 생장특성 및 생산성

ㅇ 공시품종

-황기(Astragalus membranaceus Bunge)

ㅇ 처리내용

- -처리구 : 무비구, 관행구
 - 유기질비료 I, II 처리구(1.0, 1.5, 2.0)
- -처리방법 : 유기질비료 20g을 각각 Pack에 담아 토양 -유기질비료 시용량 : 유기질비료의 질소함량을 200%로 각각 처리


ㅇ 조사내용

- 주요생육기시별 생장특성
- 수확 후 근 생산량
- 식물체 부위별 주요 약효성분

실험결과

- 1. 유기질비료의 토양처리 후 일수에 따른 부숙화율의 변화는 처리 후 20일까지 급속하 게 부숙화 되었고, 유기비료별로 유기비료Ⅱ가 유기비료Ⅰ보다 빠르게 부숙화 되는 것 으 로 나타났고, 황기의 생육이 왕성한 처리 후 110일에는 유기비료Ⅱ가 47.%로 27%인유기 비료 I 보다 20.%이상 높은 부숙화율을 보였다.
- 2. 유기질비료의 토양처리 후 일수에 따른 질소의 가용화량 변화는 전반적으로 유기비료 Ⅱ가 유기비료 I 보다 질소의 가용화량이 많은 것으로 나타났으며, 처리 후 20일의 질소가 용화율은 유기비료Ⅱ는 53%를 나타냈고, 유기비료Ⅰ은 51%의 가용화율을 나타냈다.

본 연구는 농촌진흥청 공동연구사업(과제번호: 200802A01036031)의 지원에 의해 이루어진 것임 Corresponding author: 윤명렬 E-mail: booltago@hanmail.net Tel: 010-9425-7346 3. 유기질비료 처리에 따른 황기의 생장특성은 전반적으로 유기비료구가 관행구보다 지상 및 지하부에서 크거나 비슷하였으며, 유기비료별로는 초장을 제외하고 유기비료간 큰 차이를 보이지 않았다. 근 수량은 관행구가 19g/주 으로 가장 많았으며, 그 다음 유기비료Ⅱ처리구, 유기비료Ⅰ처리구, 무비구 순으로 많았고, 유기비료 처리구중 유기비료Ⅱ의 2배 처리구가 17.8g/주 으로 가장 많은 근 수량을 보였다.

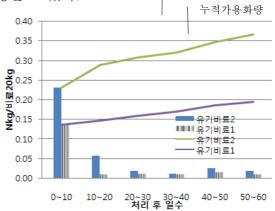


그림. 1 황기 유기 재배 시 유기질비료 처리 후 일수에 따른 부숙화율의 변화.

그림. 2 황기 유기 재배 시 유기질비료 처리 후 일수에 따른 질소의 가용화량 변화.

표. 1 황기 유기재배 시 유기질 비료처리에 따른 지상 및 지하부 생장특성

조사	처리내용			지상부			지하부	
•			초장	분지수	절직경	근장	근직경	
시기			(cm)	(개)	(mm)	(cm)	(mm)	
9월 30일	관행구		74.6	7.3	5.0	29.8	7.7	
	유기비료 I	N100	69.5	8.8	6.9	30.7	9.8	
		N200	73.5	10.8	7.0	30.3	10.5	
	유기비료Ⅱ	N100	71.0	8.9	6.3	37.7	8.6	
		N200	76.3	9.1	7.6	24.0	10.9	
10월 28일	관행구		65.0	6.7	5.8	24.7	9.9	
	유기비료 I	N100	68.5	14.1	6.7	34.4	12.0	
		N200	68.6	13.5	6.2	23.7	10.5	
	유기비료Ⅱ	N100	71.5	13.3	7.9	25.5	11.9	
		N200	70.8	10.0	8.4	27.9	12.2	

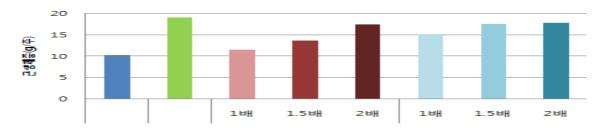


그림. 3 유기 재배된 황기의 수확시기 유기비료 처리별 근 생체중 비교