단독운전방지를 위한 RPV 방식의 특성분석 및 계어기법

바이사, 허혜성, 자야, 김홍성, 이제필, 최규하, 건국대학교

Characteristics Analysis and Control method of RPV for Anti-Islanding

Bayasgalan, H.S. Heo, Zayabaatar, H.S. Kim, J.P. Lee, G.H. Choe Konkuk Univ,

ABSTRACT

현재 태양광, 풍력 및 연료전지 즉, 신재생에너지를 많이 사용하게 됨으로써 이를 계통과 병렬로 연결하여 쓰고 있다. 그러나 계통에 연결할 경우 여러 가지 문제가 발생할 수가 있는데 그중에서 대표적으로 단독운전을 들 수가 있다. 이를 방지하기 위한 검출기능은 시스템의 안전성 및 전기적 안전성 측면에서 매우 중요하다.

본 연구에서는 단독운전 검출을 위한 RPV 방식 및 제어알고리즘을 제안하였으며, 계통의 전압 위상을 기준으로 전류위상각도에 따른 주파수 변동 특성을 해석하였다. 해석 및 제안된 방법의 타당성은 EMTP 및 Matlab 을 이용하여 검증하였다.

1. 서돈

현재 배전계통에 태양광, 풍력, 연료전지 등 소용량 분산배치가 가능한 발전설비 도입이 선진국을 중심으로 추진되고 있다. 계통과 연계할 때 문제점들이 있는데 그 중에서 단독운전 문제점을 들 수 있다.

단독운전검출에 의한 다양한 기법들이 개발 되었으며, remote과 local로 나눌 수 있다[1]. Remote 기법들은 전력선 통신을 이용하여 계통의 이상을 검출한다[2,3]. Local 기법은 별다른 장치를 요구하지 않으며, PCS의 전압, 주파수, 특성들을 이용하여 단독운전을 파악한다.

Local 기법은 수동적과 능동적인 기법으로 나눌 수 있으며, 수동적인 기법은 PCS 출력에 영향을 주지 않고 단지 출력상태를 모니터링하고 단독운전 시에 생기는 특성 변함을 이용한다[4-6]. 단독운전 시에 태양전지에서 생산 전력량과 부하 요구량이 평형이 되면 계통연계점에서 전압 및 주파수 등의 특성들이 변하지 않으며 검출하지 못하게 되는 단점이 있다.

능동적 기법은 수동적 기법의 이러한 단점을 해결하기 위해서 계통에 미소한 왜곡을 주어서 계통이 끊겼을 때 나타나는 왜곡률을 관측한다.

대부분의 능동적 방식에는 인버터 출력 전류제어를 통해 계통에 왜곡을 주입하며, 왜곡한 신호의 기준파형에 따라 다양한 방식들이 있다[1].

예를 들어 전류의 반주기마다 주파수를 빠르게, 혹은 느리게 제어하는 AFD방식과[7][8] 이를 개발해서 나온 주파수의 움직이는 방향으로 더욱더 움직이도록 데드타임 구간을 조절하는 AFDPF[9], 주기 시작마다 전류 각도를 제어하는 SMS 방식[10], 전류를 연계점 전압과 위상차를 주어 제어하는 RPV 등이 있는데 AFD, AFDPF, SMS 방식에는 전류제어 파형이 비선형 특성을 갖고 있으며 수학적 해석에는 어렵다.

AFD 및 AFDPF 방식의 경우 데드타임 구간이 커질수록 주파수 변동치가 커져서 단독운전 검출에 유리한 지침을 제공하나 전류 고조파가 증가하는 특성을 가진다[8]. 그러므로 고조파 발생과 관련한 전원의 질적 측면 및 간단한 수학적 해석 등으로 RPV 방식이 효과가 높다.

본 연구에서는 IEEE 929-2000에 제시한 단독운전시험조건 하에서 RPV 방식을 적용한 UIPV 시스템의 단독 운전 특성을 해석하고 제안된 방법의 타당성은 EMTP를 이용한 시스템 시뮬레이션을 통하여 검증하였다. 주입한 무효전력의 양을 전압과 전류의 위상각으로 표현하였으며, 단독운전 시 무효 전력주입에 따른 주파수 변동 특성을 해석 하였다.

2. 전체시스템 구성도

3kW급의 계통연계형 태양광 시스템의 구성은 그림 1 과 같다. 전체시스템은 PV-array와 계통연계형 인버터 및 직류단 컨버터를 포함한 PCS, 제어기, 차단기와 단독운전을 시험하기 위한 RLC 가정부하로 이루어진다. 가상의 계통 정전에 의해서 차단기를 이용하여 단독운전 특성을 실험하였다.

그림1. 계통연계형 태양광 발전시스템의 구성도 Fig. 1 Configuration of UIPV System

제어계는 PLL, 전류, 전압 제어기로 구성된다. 전력회로는 계통 측에서 일어나는 현상에 관심을 두었으며, 시뮬레이션 시간을 단축시키기 위하여 PCS으로 표현된 단상 풀브리지 인버터 및 직류단 컨버터를 전류원으로 간략화하여 표현하였다.

2.1 PLL 계어기

계통전압의 위상추정은 전체 시스템 제어계 구성 시 전류 기준 신호를 만들기 위해 필수적이며, 계통전압에 노이즈나 외란이 유입될 경우에도 계통전압의 위상은 순시적으로 검출되어야 한다. 이러한 문제는 그림 1 과 같은 위상동기회로 (Phase Locked Loop)를 이용하고 전달 함수는 식(1)과 같다.

그림 1 PLL 제어 블로그도 Fig. 1 PLL Control block diagram

$$\frac{\theta}{\theta^*} = \frac{\frac{1}{2}V_m K_P s + \frac{1}{2}V_m K_I}{s^2 + \frac{1}{2}V_m K_P s + \frac{1}{2}V_m K_I}$$
(1)

PLL 회로에서 순시적인 계통 주파수 ω(t)는 다음과 같다.

$$\omega(t) = K_p E \sin(\theta^*(t) - \theta(t)) + K_i \int E \sin(\theta^*(t) - \theta(t)) dt + \omega_o$$
(2)

3. RPV 방식 해석 및 △ 6 설계

본 연구에서 단독운전 시 시스템 운전특성의 해석은 계통전압의 주파수 변동에 대하여 이루어지며, 해석상의 가정은 다음과 같다.

- 스위칭 손실과 같은 시스템 손실을 무시함
- UIPV 시스템의 직류 전압제어에 의한 전력균형 제어는 이상적으로 수행됨
- 전류 제어기의 이득은 1(즉, i_{con} = i^{*}_{con})임
 정상상태에서 PLL의 위상오차는 0임

RPV 방식에 전류 기존신호는 식(3)과 같으므로 UIPV 시스템으로부터 발전되는 전력은 계통측을 기준으로 정상상태에서 식(4)와 같다.

$$i_{con}^* = \sqrt{2I_{rms}\cos\theta(t)} + \sqrt{2I_{rms}\sin\theta(t)} = i_{ac} + i_{re}$$
(3)

$$P_{sol} - jQ_{inj} = V_{scon}(I_{con} - jkI_{con}) = P_{sol} - jkP_{sol}$$
(4)

θ 는 계통전압을 기준으로 한 전류의 위상각
 k 는 유효전력에 대한 무효전력의 양이다.
 주입한 무효전력을 가상 등가 임피던스 Z_{inj}로

표현하면 식(5)와 같으며 그림1 에서와 같은 RLC 부하는 가상 임피던스를 포함하여 그림 3과 같은 등가 회로로 나타난다.

$$Z_{inj} = j\frac{R}{k} \tag{5}$$

그림 3. RPV 적용 시 시스템 등가 회로 Fig. 3 Equivalent Circuit for system with RPV

그림3 의 임피던스는 다음과 같다.

$$Z_{q} = \frac{R - jR^{2}(\omega C - \frac{1}{\omega L} - \frac{k}{R})}{1 + R^{2}(\omega C - \frac{1}{\omega L} - \frac{k}{R})^{2}} = \frac{V \angle \theta^{*}}{I \angle \theta} = \frac{V}{I} \angle (\theta^{*} - \theta)$$
(6)

여기서, θ^* 는 계통전압의 기준 입력 위상

θ^{*}-θ=Δθ 는 계통전압과 인버터출력 전류의 위상차이며 식(7)과 같이 정의할 수 있고, 계통의 주과수 변동특성을 구명할 수 있는 식(8)과 같은 1차 미분방정식을 얻을 수 있다.

$$\sin(\Delta\theta(t)) \equiv (P_{DC} + P_{AC}\Delta\omega) \tag{7}$$

$$\begin{array}{l} \left. \dot{\alpha} \right] \left[\mathcal{A} \right], \\ P_{DC} = \frac{-R(\omega_0 C - \frac{1}{\omega_0 L} - \frac{k}{R})}{\sqrt{1 + R^2 (\omega_0 C - \frac{1}{\omega_0 L} - \frac{k}{R})^2}} \\ P_{AC} = \frac{-R(C + \frac{1}{\omega^2_0 L})}{\left(1 + R^2 (\omega_0 C - \frac{1}{\omega_0 L} - \frac{k}{R})^2\right)^{3/2}} \end{array}$$

$$\Delta \omega'(t) - \frac{K_i E P_{AC}}{1 - K_p E P_{AC}} \Delta \omega(t) = \frac{K_i E P_{DC}}{1 - K_p E P_{AC}}$$
(8)

초기치를 0으로 두고 해를 구하면 다음과 같다.

$$\Delta\omega(t) = \Delta\omega(t)_{\max} \left(1 - e^{-\frac{t}{\tau}}\right) \tag{9}$$

$$\Delta \omega_{\max} = \frac{\left(-\omega_o C + \frac{1}{\omega_o L} + \frac{k}{R}\right) \left(1 + R^2 \left(\omega_o C - \frac{1}{\omega_o L} - \frac{k}{R}\right)^2\right)}{C + \frac{1}{\omega_o^2 L}}$$

$$\tau = -\left(\frac{1 - K_p E P_{AC}}{K_i E P_{AC}}\right)$$

203

식(9)에서 최대주파수 변동치 k를 조절하여 $\Delta \omega_{\max}$ 는 어떤 부하 임피던스에서도 제어 가능함을 알 수 있다. 공진 조건에서 $\Delta \omega(t)_{\max}$ 를 구하면 다음과 같다.

$$\Delta \omega_{\max.reso} = \frac{\frac{k}{R}(1+k^2)}{C + \frac{1}{\omega_o^2 L}}$$
(10)

위의 식을 k에 대해 정리하고, $\Delta \omega_{max}$ 대신 주파수 변동치에 관한 설계량을 의미하는 $\Delta \omega_{design}$ 을 사용하면 다음과 같은 k에 대한 3차 방정식을 얻을 수 있다.

$$k^{3} + k = \Delta \omega_{design} R(C + \frac{1}{\omega_{o}^{2}L})$$
(11)

k 값은 3차 방정식의 근의 공식을 이용하면 다음과 같이 구해진다.

$$k = \left(A + \sqrt{\frac{1}{27} + A^2}\right)^{1/3} + \left(A - \sqrt{\frac{1}{27} + A^2}\right)^{1/3}$$
(12)

$$\stackrel{\text{(a) 7]}}{\to} A = \frac{\Delta \omega_{design}}{2} R(C + \frac{1}{\omega_o^2 L})$$

k값을 연계점 전압 및 인버터출력 전류 위상각으로 표현하면 다음과 같다.

$$k = \frac{Q}{P} = \tan(\Delta\theta) \tag{13}$$

 $\Delta \theta = \tan^{-1} k \tag{14}$

위의 식에 대한 해 $\Delta \theta$ 는 단독운전 시 공진조건에서 $\Delta \omega_{design}$ 만큼 계통 주과수가 변하도록 전류의 전압위상을 기존으로 한 위상각이다.

4. 분석 및 시플레이션 결과

앞 절에서 한 해석을 검증하기 위하여 EMTP를 이용한 시뮬레이션을 실행하였다. 그림1의 단독운전 테스트 부하회로의 quality factor는 q=2.5 이며, Q_L =Q_c=7.5[kVAR]이다. IEEE 929-2000에 의하면 UIPV시스템의 운전시스템은 그림 4와 같은 허용범위를 가지고 있으며 즉, 이 범위 안에서 단독운전을 검출 못한다.

EMTP를 이용한 그림1와 같은 시스템의 시뮬레이션에 사용된 조건을 표1에서 나타난다.

그림5는 -29.13[%]≤ΔP≤17.35[%], q=2.5인 공진 조건에서 단독운전 시 계통의 주파수가 정상 동작점 (60Hz)를 중심으로 ±0.7[Hz] 만큼 변동할 조건을 식(14)를 이용하여 Δθ를 계산한 결과를 보인다.

표2에서는 식(9)를 이용하여 Matlab으로 한 분석결과 와 EMTP를 이용하여 시뮬레이션한 RPV 결과를 보여 주고 있다. A로 표시한 기둥은 ΔP=-29.13[%]일 때 이며 B로 표시한 기둥은 ΔP=17.35일 조건에 대한 값을 보여 주고 있다.

그림 4 IEEE 929-2000에서 제시한 전압 주파수 불검출 영역 Fig. 4 NDZ of Voltage & frequency recommended by IEEE 929-2000

표 1 해석 및 시뮬레이션 조건 Table 2 Analysis and simulation condition

L _{con} ,	3.2[mH],
C _{dc} ,	3200[uF]
정상 계통 조건	220[V], 60[Hz]
P _{sol} [kW] 및 DC 전압 V _{dcon}	3[kW], 380[V]
스위칭 주파수	10[kHz]

그림 5 주파수변동량이 $\pm 0.7[Hz]$ 가 되도록 하는 $\Delta\theta$ Fig. 5 Calculated $\Delta\theta$ for $\Delta\omega_{design} = \pm 2\pi 0.7[rad/sec]$

그림 5 는 $\Delta P=17.35[\%]$ 인 공진 조건에서 $\Delta \theta$ 를 +4°, 0°, -4° 로 하고 식(9)을 이용하여 Matlab 을 통해 얻은 결과와 EMTP 를 이용하여 얻은 시스템의 단독운전 발생 시 주파수 변동특성을 보여준다.

Δθ =0° 일 경우 공진조건이므로 이론적으로 주파수가
변동하지 않으나 EMTP 를 이용한 시뮬레이션 결과
정상상태에서 평균 0.035[Hz]정도 주파수가 변화하는
결과가 중첩되어 주파수가 증가할 경우(Δθ =4°)
이론적인 결과는 60.7[Hz]이나 EMTP 상의 결과는
60.733[Hz] 정도이며, 주파수가 감소할 경우(Δθ =-4°)
이론적인 결과는 59.3[Hz]이나 EMTP 상의 결과는
59.345[Hz] 정도로서 이론적인 결과와 시뮬레이션
결과에 오차가 생기는데 이는 해석 시 고려하지 않은
가정에 의해 발생하는 오차에 기인하는 것이다.

표 2 q=2.5인 공진 조건에서 단독운전 시 계통 주파수 Table 2 Utility frequency under islanding mode

	분석[Hz]		RPV[Hz]		FPF
$\Delta \theta$	А	В	А	В	A,B
-11.3	56.77	57.93	57.03	58.12	0.980
-8.53	57.62	58.47	57.76	58.56	0.988
-5.71	58.43	58.99	58.51	59.05	0.995
-4.00	58.91	59.30	58.97	59.34	0.988
-0.57	59.84	59.90	59.88	59.93	0.999
0.57	60.15	60.09	60.19	60.13	0.999
4.00	61.09	60.69	61.12	60.73	0.998
5.71	61.56	61.00	61.60	61.03	0.995
8.53	62.37	61.52	62.39	61.53	0.988
11.3	63.22	62.06	63.19	62.06	0.98

* 분석: 식(9)를 이용한 결과를 의미

그림 6 시간 평면에서 응답특성 비교 Fig. 6 The comparison of results obtained from each technique

이러한 결과를 통해 제안된 해석방법은 단독운전 시 미소한 주파수 변동 특성에 대하여 전체적인 경향성을 잘 표현하고 있음을 알 수 있고, 제안된 Δθ 의 선정방법은 약간의 오차가 있으나 대체로 타당함을 알 수 있다. 그리고 그림 6 을 통해 전한 바와 같이 단독운전 발생 순간 위상변동으로 인해 주파수가 순간적으로 변화하는 현상을 관찰할 수 있다.

5. 계문

본 연구는 단독운전모드에서 능동적 검출 기법 가운데 무효전력 변동 방식(RPV)을 적용한 계통 연계형 태양광발전 시스템의 연계점에서 계통전압의 변동특성을 해석하였다. 제안된 방식의 타당성을 검증하기 위하여 EMTP 를 이용한 시스템 시뮬레이션을 사용하였다.

단독운전 시 계통 주파수의 변동특성을 해석결과와 시뮬레이션 결과는 약간의 차이를 보이나 본 연구에서 제안된 해석법은 단독운전모드에서의 계통 주파수 변화에 대한 경향성이 잘 표현되었음을 알 수 있다. 이 논문은 산업자원부의 연구비 지원에 의하여 연구 되었슴

참고문헌

[1] Jun Yin, Liuchen Chang, "Recent Developments in Islanding Detection for Distributed Power Generation", LESCOPE-04, pp. 124~128. 2004

[2] M. Ropp, K. Aaker, J. Haigh, N. Sabbah, "Using power line carrier communications to prevent islanding," in Proc. 28th IEEE Photovoltaic Specialists Conf, 2000, pp. 1675~1678.

[3] M.A. Refern, O.Ustra, G. Fielding, "Protection against loss of utility grid supply for a dispersed storage and generation unit," IEEE, Trans, Power Delivery, vol. 8, no. 3, pp. 948~954, July 1993.

[4] M.A Redfern, J.I. Barrett, & O. Usta, "A new microprocessor based islanding protection algorithm for dispersed storage & generation units," IEEE trans. Power Delivery, vol. 10, no. 3, pp. 1249–1254, July 1995.

[5] F. Pai and S. Huang, "A detection algorithm for islanding-prevention of dispersed consumer-owned storage and generating units," IEEE Trans. Energy Conversion, vol. 16, no. 4, pp. 346~351, Dec. 2001.

[6] H. Kobayashi, k. Takigawa, & E. Hashimoto, "Method for preventing islanding phenomenon on utility grid with a number of small scale PV systems," Proc. 22nd IEEE Photovoltaic specialists Conf., 1991, pp. 695-700

[7] G.A. Kern, "SinShine300: Utility interactive AC module anti-islanding test result," in Proc. 26th IEEE Photovoltaic Specialists Conf, pp. 1265~1268, 1997.

[8] 김홍성, 김한구, 최규하, 김재철, 최영호, "IEEE 929-2000 단독운전 시험조건 하에서 단상 계통연계형 PV 시스템의 Anti-Islanding 을 위한 RPV 방식 및 AFD 방식의 해석 및 설계"전력전자학회 논문지, pp. 37~49, 2007.

[9] M. E. Ropp, M. Begovic, A. Rohatgi, "Analysis and performance assessment of the active frequency drift method of islanding prevention," IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 810~816, Sept. 1999.

[10] G.A. Smith, P.A. Onions, D.G Infield, "Predicting islanding operation of grid connected PV inverters," Proc. Inst. Elect Eng-Power Application, vol. 147, no. 1, pp. 1-6, Jan. 2000.