
 

 

Abstract 
 

The open circuit voltage (OCV) is widely used to estimate the 
state of charge (SOC) in many estimation algorithms. However, 
the relationship between the OCV and SOC can not be exactly 
same for all batteries. Because the conventional OCV-SOC differs 
between batteries, there is a problem that the relationship of the 
OCV-SOC should be measured to accurately estimate the SOC. 
Therefore, the conventional OCV-SOC is modified to a new 
relationship in this paper. Thus, problems resulting from the 
defects of the extended Kalman filter (EKF) can be avoided by 
preventing the relationship from varying. In this paper, SOC and 
capacity of the lithium-ion battery are estimated using the dual 
EKF with the proposed method. 

 
1. Introduction 

 
There are several ways to estimate the SOC of a battery [1]. The 

ampere-hour counting method is simple and easy to utilize, but it 
has problems such as an initial value error and accumulated errors. 
The OCV method is very accurate, but it needs a rest time to 
estimate the SOC. So it is not possible for an application, such as 
hybrid electric vehicle (HEV). The extended Kalman filter, which 
uses the plant model combining the two aforementioned methods, 
has been presented [2]. This method has been known to be the 
optimal adaptive algorithm based on recursive estimation. To 
improve the performance of the estimation, the model parameters 
should be chosen correctly. However, the parameters of the battery 
model in the EKF, such as the resistance, capacity and OCV-SOC, 
are not consistent due to differences of the SOC, temperature and 
aging.  

The relationship of the OCV-SOC differs between batteries. 
Thus, the use of this varying OCV-SOC data for the SOC 
estimation algorithm results in unacceptable error. In this work, a 
methodology of defining the new OCV-SOC relationship which is 
independent of the battery condition is proposed. However, the 
battery capacity in the EKF should be estimated because the 
capacity is changed for the new relationship. Thus, the dual EKF 
[3, 4] is used to estimate the SOC and the capacity simultaneously. 
The proposed algorithm is verified through simulations and 
experiments using an 18650 type lithium-ion battery. 

 
2. The Proposed Approach 

  
2.1 Modification of the OCV-SOC 
The conventional relationship of the OCV-SOC is obtained by 

measuring the open circuit voltage at each SOC. However, the 
relationship can not be exactly the same for every battery even if 
the batteries are fabricated with the same materials and structures, 
as shown in Fig. 1. Therefore, it is difficult to apply the 
conventional OCV-SOC data to the estimation algorithm. From 

the viewpoint of the implementation of the algorithm, an 
equivalent electrical battery model is needed as shown in Fig. 2 
and the OCV, as a function of SOC, is utilized as a voltage source. 
As shown in Fig. 1, the relationships of the OCV-SOC for 9 
different batteries are measured for the same conditions, such as 
temperature and aging. The results show that considerable 
variations which may cause unacceptable error in the SOC 
estimation. However, measuring the OCV-SOC of each battery for 
improvement of the SOC estimation is a very time-consuming 
process if possible. Therefore, a new OCV-SOC relation must be 
considered. 

In this paper, the new concept of the capacity is defined on the 
basis of the OCV and the SOC is also modified with respect to the 
new capacity. To find the proposed OCV-SOC, a cutoff open 
circuit voltage is chosen arbitrarily. In this case, the cutoff voltage 
is the set voltage, i.e. 3.6V, as shown in Fig. 3 and the 
conventional relationship from Fig. 1 is configured using the set 
voltage as a reference voltage. As can be seen in this figure, a 
strong consistency can be seen between the OCV-SOC data of 
each battery. Thus, a single OCV-SOC can be used for all batteries 
of the same type. However, the estimation using the proposed 
method causes a change in the capacity. So the capacity must be 
estimated in addition to the SOC. 
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Fig. 1 The conventional relationship of the OCV-SOC 
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Fig. 2 The simplified equivalent electrical model 

of the lithium-ion battery 
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Fig. 3 The proposed relationship of the OCV-SOC 

 
2.2 Implementation of dual extended Kalman filter 
The dual EKF is used to estimate the SOC and capacity of 

lithium-ion battery. This algorithm combines the two EKFs, one of 
which is the state filter which estimates the SOC, and the other is 
the weight filter which estimates the capacity. At every time step, 
the state filter uses a priori value of the weight filter, while the 
weight filter uses a priori value of the state filter. Therefore the 
two EKFs are calculated concurrently to estimate the SOC and 
capacity [4]. 

To implement the dual EKF, an equivalent electrical model 
which represents the electrochemical characteristics of the battery 
is needed. There are several researches that extract the model and 
its parameters of the battery [5, 6]. In this paper, the current and 
voltage information of the battery are analyzed to obtain the 
modeling and parameters as shown in Fig. 2. At first, the open 
circuit voltage (OCV), which means the equilibrium potential of 
the battery, is modeled as an equivalent voltage source. Secondly, 
the parallel circuit consisting of Rd and Cd is used to model the 
dynamic response of the current reference. Finally, the series 
resistance, Ri, is used to represent an instantaneous voltage 
response. 

This model can not practically simulate the nonlinear dynamic 
behavior of the plant. However, the complicated battery modeling 
increases the order of the system, which makes it difficult to 
implement the estimation algorithm and to operate in real time. 
Thus, the measurement noise model can be used in the case that 
errors between the plant and model exist [2]. Therefore, it can 
serve to construct the reduced order model and to prevent the dual 
EKF algorithm from measurement errors caused by inaccurate 
modeling. 

The state-space representation with difference equations of the 
dual EKF is described (1)-(3). The x

kw  and kwq  as the process 
noise of the state filter and weight filter, respectively, are assumed 
to be independent, zero-mean, Gaussian noise with the covariance 
matrices x

kQ  and kQq . The measurement noise ku  is assumed to 
be independent, zero-mean, Gaussian noise with the covariance 
matrix kR . In this case, the state-space equation of the battery 
model is derived as (4)-(6). 

1 ( , , ) x
k x k k k kx f x u wq+ = +  (1) 

 1k k kwqq q+ = +  (2) 
 ( , , )k k k k k ky h x u q u= +  (3) 
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 ,k n kCq é ù= ë û  (5) 
    , ,( , )k k n k d k i kV OCV SOC C V R i= - - ×  (6) 

 
The measurement matrix is derived from (7)-(9). In (9), because 

the first term is irrelevant to the capacity, as shown the Fig. 3, its 
value is approximately zero. Thus, the realization of the algorithm 
can be simplified. 
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3. Result 

 
Simulations and experiments were carried out to demonstrate 

the performance of the algorithm with proposed OCV-SOC. The 
experimental set was comprised of a power supply, electric load, 
constant temperature and humidity chamber, electrochemical 
impedance spectroscopy (EIS) and a personal computer (PC). The 
cycled experimental results, such as the voltage, current, temp., 
and etc., of the battery were collected through the data acquisition 
board and they were used as an input of the simulations. The 
Matlab/Simulink S-function was used for the simulations. 

The charge and discharge cycling test of the battery were carried 
out under the current profile, which was scaled down the HEV 
automotive profile, from Fig. 4. This profile caused a variation of 
the SOC for one hour and was used to make a total of eight cycles. 
Each cycle is different from the time used above profile and the 
end point of the SOC is varied to verify the estimation results in 
the 40-80% SOC regions after completing cycles. Because the 
ampere-hour counting method has critical defects, as mentioned 
above, the SOC was reset to one to minimize the accumulation 
error after each cycle in the middle of the cycling profile. Thus, the 
ampere-hour counting method can be considered to check the 
general variation trend of the SOC. The performance of the SOC 
estimation was verified with the discharge test after two hour rest 
periods between each cycle. The estimation of the capacity was 
verified with the real capacity during all cycles. The real capacity 
was newly measured during the SOC reset after each cycle and its 
values are as shown in Fig 5.  
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Fig. 4 The charge and discharge cycling profile 
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Fig. 5 Capacity variation during cycles 

 
The capacity and SOC measured before cycling are 1.29Ah, and 

0.8, respectively. Therefore, the estimated SOC and capacity using 
the proposed methods are changed to the conventional values, 
SOC and capacity, from (10)-(11). 

 
 ( )( )1 1 1new cutoffSOC SOC SOC= - - -  (10) 

 modified capacityconventional capacity=
1 cutoffSOC-

 (11) 

 
where, the SOCnew, modified capacity and SOCcutoff denote the 
modified SOC, capacity and SOC value at the set voltage of the 
new OCV-SOC, respectively. 
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Fig. 6 SOC estimation result of proposed algorithm 
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Fig. 7 SOC estimation results at cycles 
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Fig. 8 Capacity estimation result of proposed algorithm 

 
The SOC estimation result accurately tracks the real SOC in 

spite of an initial value error which is smaller than the real value in 
Fig. 6. Also, the general trend between ampere-hour counting and 
estimation is almost the same. The performance results from the 
discharge test come within the specification of ±5%, as shown in 
Fig. 7. In Fig. 8, the result of the capacity estimation with an initial 
value smaller than the real value is shown. 

 
4. Conclusion 

 
In this paper, the estimation method using the dual EKF with 

the new OCV-SOC is proposed to overcome the variation of the 
conventional OCV-SOC. The explanation of the OCV-SOC 
relation and the dual EKF algorithm are given along with 
experimental results. The estimation results of the dual EKF 
satisfy the specifications of 5%, and the realization of the dual 
EKF can be simplified by the proposed method. 
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