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Flutter Analysis of Bridge Girder with n-Shaped Section
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1. INTRODUCTION

It has been reconized that wind responses of long-span bridges mainly include buffeting response du e to
wind turbulence and self-excited vibrations, such as flutter, vortex shedding and galloping. The aerodynamic
stability of bridge decks is established by carrying out numerous wind tunnel tests using spring-mounted
sectional models that reproduce, at small scale, the relevant geometric and structural characteristics of the full
scale bridge. Many experiments are required to determine the critical wind speed for the onset of instability,
each with slightly different model characteristics, until an acceptable solution is found. The analytical approach
has predominantly been conducted in the freduency domain{1}.The flutter analysis is generally conducted by
complex eigenvalue analysis[2],whereas the buffeting response is typically estimated using a mode-by-mode
approach(7,8] that ignores the aerodynamic coupling among modes. More recently, an efficient scheme for
coupled multi-mode flutter analysis has been proposed by introducing the unsteady self-excited aerodynamic
forces in terms of rational function approximations{3]. For predict the flutter velocities of structures without
wind tunnel] test, Jeong[4] develop the methodology using computational fluid dynamics.

In this paper, a state-space approach for predicting the flutter response utilizing frequency dependent
unsteady aerodynamic forces is presented and buffeting responses of bridge deck with n-shaped section are
analyzed using buffeting response spectrum mehtod. The results are compared with the Scanlan's method and
the wind tunnel tests.

2. THEORICAL APPROACH

The aerodynamic forces as shown in Fig. 3 are separated into their self-excited and buffeting components.
The self-excited forces are caused by interaction between wind motion and the structure. Scanlan[1]
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mathematically described the self-excited forces on a bridge deck in terms of the so-called flutter derivatives.
The equations of motion in terms of a generalized coordinate vectors q for a bridge structural system under
wind loads can be expressed as

M,q() +C,q(0) +Kq(1) =F(t) (1)
in which

M; , Cs , K = the structural mass, damping, stiffness matrix, respectively F(t) = the total loading vector
(Fse*Fv) 5 Feolt), Fu(t) = self-excited wind load, buffeting wind load, respectively.

Fig.1. Aerodynamic forces on bridge deck

D*, L*, and M* are the self-excited drag, lift, and torsional moment per unit span length, respectively in
Fig.1. The second order equations can be transformed into first order equations using the state vector and the
Eq.l is expressed in the state-space format as[5,6]

. dq q 0 1 q 0
Y=—4 t= B P -1 1l = -1 -1 N -1
dt iq -M; Cq-M; Kq+M; F -M, Kg -M, Cg q M, 'F,

=AY +BF, 2)

The flutter wind speed is commonly determined by eigenvalue method in the frequency domain, ie, by
iteratively searching for a pair of k and ® so that the determinant of the characteristic function of the
equations of motion becomes zero. The flutter critical point can be identified by iteratively solving the complex
eigenvalues in the state-space of Eq.2 at each wind velocity.

For the autonomous system, the equation of motion in state-space form, Eq.6, becomes

Y = AY (3

Eq.3 can be solved for N for the given system matrix A. For an arbitary i-th, Eq. 3 can be expressed as

®, o,
{lid’;} {Z’id)i} 4)
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- 446 -



where %, oF the damping ratio and frequency in i-th complex mode, respectively ; j = unit imaginary

number ( j =\/-_1).

At a given wind velocity, the eigenvalue N and eigenvector d; can be determined by solving the complex

eigenvalue problem. Once the eigenvalues are iteratively predicted, the oscillation frequency @ and reducer k
are known at the given wind velocity and the damping and stiffness matrices C; and Ky can then be
computed. The flutter wind speed and corresponding flutter frequency can be identified from the eigenvalue
solutions at the condition that the total modal damping approaches zero.

3. NNMERICAL EXAMPLE

To verify the accuracy and efficiency of the analytical approach, a simply supported beam with a span 230m
was taken as an example and for simplicity and without loss of generality, only the aerodynamic forces acting
on the bridge deck were considered. The cross—section of prototype bridge decks are shown in Fig2. The
aspec ratio of case are approximatly 8, respectively.
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Fig2. Cross—Section of Prototype Bridge Deck

The predicted effective oscillation frequencies and damping ratios of vertical and torsion modes versus wind
velocity are shown in Fig.3 It can be seen that with the increase of wind velocity, vertical mode frequency
increases gradually while at the same time torsion mode frequency decreases gradually. Correspondingly, the
damping ratioc of the vertical mode increases, while the damping ratio of the torsion mode remains about
constant and decreases at higher wind velocity. Eventually, at the wind velocity of 8 m/s and 92m/s,
respectively, the damping ratio of the torsion mode becomes zero.
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Fig.3. Modal Properties with complex eigenvalue method
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This section presents illustrative examples to discuss the effects of damping ratio and to compare the
complex eigenvalue approach between the wind tunnel test. The result of the dynamic section model wind
tests in smooth flow are summarized in Table 1. From Table 1 one can see that when the damping ratio is
increased, the flutter velocity is increase and complex eigenvalue approach agree well with Wind Tunnel Test.
The Scanlan’s method, on the other hands, is higher than 5%.

Table 2. Comparison of Prediction Mehtod

NO. Damping Ratio Presented Scanlan’s Method | Wind Tunnel Test
1 0.3% 72 m/s 77 m/s 75 m/s
Case 1 | 2 0.5% 85 m/s 89m/s 84 m/s
3 1.0% 104 m/s 108 m/s >90m/s
Case 2 0.3% 92 m/s 95 m/s >90m/s

4. CONCLUSIONS

Based on the method of the complex eigenvalue approach, numerical bridge flutter stability analyses is
performed and compare with results of the wind tunnel test.

1. From a comparison of flutter stability analysis performed in complex eigenvalue method and Scanlan’s
iterative method(no interaction between the mode), the complex eigenvalue approach is proved to be valid and
rational.

2. When the damping ratio is increased, the Flutter Velocity is increase and complex eigenvalue approach
agree well with Wind Tunnel Test. The Scanlan’s method, on the other hands, is higher than 5%.

3. For bridge girder with n-shaped section of flutter stability between case 1 and case 2, it is obvious that

the flutter velocity is affected section geometry, in spite of simiar aspect ratio(b/d =8).
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