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Abstract

This paper considers a shipment planning of products from manu-
facturers to a third-party warehouse for demands with production
time windows where a demand must be replenished in its time
window. The underling lot-sizing model also assumes cargo de-
livery cost in each inbound replenishment to the warehouse. For
this model, an optimal O(nT*) is presented where n is the number
of demands and T'is the length of the planning horizon.

Key words: dynamic lot-sizing, inventory/ production, shipment
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1. Introduction

This paper considers a supply system inbound to a main third-party
warehouse (called hub) for demands with customer specific fime
windows. An areal warehouse (called center) gathers semi-finished
products from its neighbor manufacturers, providing additional label-
ing and packaging operations to make final goods, and then delivers
them inbound to the third-party warehouse hub for dispatching to end
customers. This services for production firms, including the final
labeling and packaging operations, are provided by a third-party
logistics provider who has experties in delivery and transportation.
As the specification of each product (in a demand) is chiefly charac-
terized by the type of raw material (semi-product) from manufactur-
ers, the replenishment of each product in the center highly depends
on the availability of semi-products. Hence, each demand cannot be
satisfied until the period when the appropriate semi-product is avail-
able in the center. Along with this first available period (earliest due
period), each demand also has latest due period by which it should
be fulfilled. Then the two periods, earliest due period and latest due
period, defines the time window of a demand. Given a demand i with
time window [E;, L], it should be replenished during the time win-
dow and be dispatched at the period L, This type of time window is
called production time window (Dauzére-Pérés 2002).

To provide a cost-effective schedule over periods, this paper studies a
lot-sizing model for dynamic demands with production time win-
dows. Major cost components include replenishment cost for labeling
and packaging operations in the center, product storage cost in the
hub warehouse and delivery cost between the two warehouses center
and hub. Final goods are shipped by cargos, which is delivered to the
main warehouse hub by transportation fleets, like, trucks and rail-
roads. The transportation operation is costed by the number of cargos
treated, which motivates shipment consolidation program to increase
Jull-truck-load (FTL) cargos while decreasing less-than-truck-load
(LTL) cargos in the areal warehouse center. Under the situation that
demands are given by production time windows, the chance of prod-
uct consolidation might increase because of the time window flexibil-
ity. The literature has a few results on the models for time windows
or for shipment planning; however, to the best knowledge of the
author, until now, no research has been done for the integrated model

hehwangi@chosun.ac kr

jointly considering the cargo capacity and demands with time win-
dows.

The literature is reviewed in the next Section and the model is formu-
lated in Section 3. Optimality properties are developed in Section 4
and an O(nT*) algorithm is designed in Sections 4-6. Future research
is discussed in the final Section.

2. Relavant Literature

The single-item dynamic lot-sizing model by Wagner and Whitin
(1958) assumes demands with single due dates and instantaneouse
deliveries without costs from production facility to warehosue. For
this uncapacitated problem, efficient solution procedures are pro-
vided by Aggarwal and Park (1993), Federgruen and Tzur (1991),
and Wagelmans et al. (1992). When production is limited by facility
capacity, the problem is known to have quite different problem na-
ture than the Wagner-Whitin model. For this capacitated lot-sizing
models, see Florian and Klein (1971), Bitran and Yanasse (1982),
Chung and Lin (1988) and Van Hoesel and Wagelmans (1996).

The researches on time windows in lot-sizing are started by Lee et al.
(2001) and Dauzére-Pérés et al. (2002). Lee et al. (2001) considers
delivery time windows, a kind of grace periods, during which no
penalty cost occurs. For this type of time windows, see Jaruphongsa
et al. (2004a, b), Hwang and Jaruphongsa (2006, 2008) and Hwang
(2007a). The production time window under this study is investigated
in Dauzére-Péres et al. (2002). They also classify lot-sizing problems
based on time window structure. When no time window strictly
overlays others, the model is called non-customer specific. If there is
no such restriction, the general model is called customer specific.
Recently, Brahimi et al. (2006) extended the model into capacitated
multi-item case with non-customer/ customer specific production
time windows and Wolsey (2006) presents tight extended formula-
tions for various production and delivery time window models.
Hwang (2007b) solves the problem for general cost structures. For
capacitated lot-sizing problem with both deliver and production time
window cases, Hwnag et al. (2007e) provides a O(nT*) algorithm. As
we shall see later, the optimal algorithm in this paper is based on
similar decomposition principle in Hwnag et al. (2007¢).

The inbound shipment plannning model has originated from the
multiple setups model by Lippman (1969), which contains no replen-
ishment costs. Lee (1989) extends the model by treating a replenish-
ment cost. The application of this concept of multiple setups at third-
party warehouse is done by Lee et al. (2003) for inventory replen-
ishment and outbound shipment scheduling. Several variants of in-
bound shipment models have been studied in Lee (2004), Ja-
ruphongsa et al. (2005) and Hwang (2007¢, d). However, these mod-
els assume that demands are given by single periods and until now no
result has come out to treat shipment planning for demands with time
windows. This paper deals with an inbound shipment model with
customer-specific production time windows. In the following we
present the formal mathematical model of our problem.



3. Problem Formulation and Optimality Properties

Let T denote the length of a planning horizon and # the number of
demands. For each period ¢ € {1,2, ..., T} and demand i € {1,2, ...,
n} we define:

* (: cargo capacity;

* A: unit cargo delivery cost;

* d; : required quantity of demand i;

* [E;, L}:time window of demand ¢

* r;: required quantity that should be dispatched for demands with
latest due periods of #; r, = Z

im0

¢ x;: replenishment level in ¢;

* I: inventory level in ¢

* pdx,): replenishment cost function in ¢ for the amount x, with p(0)
= 0. We assume nonspeculative replenishment function such that
pix;) = K + pix, for x, > 0 where p, = p,... Here, K, and p, denote the
setup and the unit replenishment costs in period ¢;

* h: unit inventory holding cost in ¢.

We use[x]and|x]to denote the smallest integer no less than x and
the largest integer no greater than x, respectively. We define the
following simple operators in regard with cargo capacity:

* 7 (x): minimum number of cargos to carry x item units; 7 (x) =
[ x/C_];

* n(x): minimum number of FTL cargos to carry x item units; n(x) =
Le/Cl;

* i (x): number of items that can be carried in 7 (x) cargos; m(x) =
n (x)-C;

* m(x): number of items carried in FTL cargos for the amount of x;
m(x) = n(x)-C;

* A(x): number of items carried in an LTL cargo for the amount of x;
Alx) = x—m(x).

Since items are consolidated and moved by cargo, it costs 77 (x)-4
when delivering x item units. The lot-sizing model of minimizing the
total costs for demands with production time windows is formulated
as:

T
Minimize Y ((x)- A+ p,(x)+h1,) W
=1
Subject to
I +x-r-1=0 t=1,...,T, @
X -2 y,=0 i=1,....n, 3)
> oy, =4, i=1,...,n, 4
el £, L)
y, 20 i=l,...,ntelE,L], %)
Vi = i=l,..,n,te[E,L], (6)
x, 20 t=1,..,T. G

The model (1)~(7) can be transformed into the one with no inventory.
Consdier the following objective function

Minimize i (n(x,)-A+p,(x) ®)

=1

Using results in Wolsey (2007) and Hwang (2007b), we can show
that the model (1)-(7) is equivalent to the one (8), (3)~(7), which has
no inventory holding costs and no constraints with inventory. From

now on, we will focus on the revised model (8), (3)~(7) without
inventory in which each demand is satisfied instantaneously at the
time of replenishment.

For notational convenience, we let v, = v, + vy + -+ + v, if s < f and
v, = 0 if 5 > ¢, for any series of values vy, v, ..., vr. Then, x,, and d;,
represent the cumulative sums of replenishments and demands from s
through ¢, respectively. Now, we present notations for periods and
demands. About periods, we need to have the following definitions:

¢ A period ¢ is called a replenishment period if x, > 0.

* A replenishment period 7 is called a complete period if any demand
with its latest due period no earlier than ¢ is satisfied at or after pe-
riod 1.

* A replenishment period ¢ is called a full-truck-load (FTL) period if
its replenishment quantity is a multiple of C, i.e., x, = m(x,). Any
replenishment period, which is not FTL, is referred to as a less-
than-truck-load (LTL) period.

Without loss of generality, we assume that demands are given by
earliest due periods such that demand i precedes demand j if £; < E;
or E;= E; < L; < L;. Inregard with demands, we introduce the follow-
ing definitions: For | < A< y< T+1,

* D(A, p) denotes a set of demands whose latest due periods are
between Aand y,ie., D(A, )= {i: A<Li<y};

* a(A, y) denotes the first demand whose latest due period is between
periods A and y, i.e, a(4, ) = min{i: ie D(4, )}.

Based on these definitions, we present Properties 1-3 on replenish-
ment periods in relation with set D(4, ) and demand a(4, ).

Property 1. There exists an optimai solution such that if period A is
an LTL replenishment period, then any demand ie D(4, T+1) is sup-
plied only by replenishments in periods no earlier than A.

Property 2. There exists an optimal solution such that if demand
ieD(4, y) is supplied by replenishment in period A, then any demand
J>iwithjeD(4, y) is supplied only by replenishments during {4, 2 +
1,..,y-1}.

Property 3. Consider a subproblem of satisfying demands ie D(1, 7)
by replenishments during periods {1, 2, ..., »~1}. There exists an
optimal subplan such that a complete replenishment period A exists
in which at least one unit of demand a(A, y) is replenished and after
which all the replenishments are FTL.

We let () be the minimum cost in satisfying demands D(1, ) for 1
< y<T. Then, the optimum cost is F(7). Now, let us define G(4, »), 1
< A<y< T+ 1, as the minimum cost of satisfying all demands i €
D(A4, y) by replenishments during periods {4, A + 1, ..., y— 1} under
the constraints

(1) period A is a complete replenishment period and each replenish-

ment during {A+1,..., 7y~ 1} is FTL, and
(ii) at least one unit of demand a(4, ) is replenished in period A.

Then Property 1-3 suggests that the optimal solution F(7) can be
found by the following recursion procedure:



FQ)
F(r)

0,
; = ©
min {F(1)+ G(4.7)}, y=2,.,T+L

Note that this procedure is solved in O(7%) given G(4, ». The next
Section presents how to compute G(4, 7).

4. Optimal Algorithm
To develop decomposition principle, we introduce a set D(i | 4, 7)
and a demand a(i|4, y), fori € D(A, pand | S A< y< T+1:

¢ D(i|4, y) denotes the set of all demands j > i withj € D(4, 7). Also,
we define D(n+1 | 4, ») = O;

¢ C(i]A, y) denotes the set of all crossing demandsj > i, j € D(i|4, 7),
with £, < A< L; < y. Also, we define C(n+1 | 4, p) = &;

* a(ijA, ) denotes the smallest demand j with latest due periods
between A and y. That is a(i|A, ») = min{j : j > i, j € D(i|A, p)}. If
the set {j : j > i,j € D(i|A, y)} is empty then we leta(i | 4, p) = n+1.

Then, the set D(i | A, 7) has the following relationship with demand
a(i| &, p):

D(i| A, »={i} v Dl A, »| 4, ».

We use dj;, to denote the total sum of demands in D(i | 4, ). Then
we also have djji,= di + dagpa, It is not difficult to see that we can
compute all values of a(i | 4, ), dyz, in O(nT") time. Note that the set
D(A, ) is denoted as D(a(4, ») | 4, ) and its total sum as dyya,

Let Obe some part of demand i, 0 < #< d;. Then, a (8, i|4, y)-problem

is to obtain a minimum schedule over periods {4, A+1, ..., =1} such
that

(i) every replenishment during {4, A+1, ..., %1} is FTL except for
the first replenishment period,

(i) every demand in D(i|4, ») is fulfilled but the demand i can be
partially supplied by Gunits, 0 < 8<d..

Based on this definition, we introduce three costs go(il4, ), g1(i|4,
and f{ 4, i|A, ) for (6, i|A, y)-problems:

* go(i|4, ) is the minimum cost of the (4;, |4, y)-problem,

* &i(il4, y) is the minimum cost of the (d;, i|4, y)-problem in which a
replenishment occurs in period A, and

* f6, 1|4, y) is the minimum cost of the (d;, i|4, 3)-problem in which
demand i is supplied from the replenishment in period A.

Then, we can see that G(4, y) is computed by f{) as follows:
G4, 1) = fdaa y» a(4, P4, ). (10)

The remaining task is how to compute f6, i|4, 7), which will require
the computations of g(il4, 7). g1(i|4, ). To this end, another useful
properties are presented.

Property 6. Consider a (6, i|4, y)-problem such that the first replen-
ishment periord for demand i occurs in period 7 € [A, »-1]. Then
there exists an opimal schedule such that if every replenishment
during {7, =+1, ..., )1} is FTL, then the total sum of replenishment
quantities during {7, =1, ..., =1} is m(G+dugepic))-

Suppose that demand i has replenishments in periods #1), #(2), ...
k) for E; < (1) < #2) < - £ k) < L;. We further suppose that
demand i has 6, uints supplied in each period «j) forj = 1,2, ..., k.
Then a replenishment period #(j) with 8y, > C is called a major re-
plenishment period for demand i. Note that each of the periods (1),
72), ... (k) is either LTL or FTL period. The following property
limists the number of LTL and major periods in a demand.

Property 7. There exists an optimal solution such that LTL or major
replenishment for a demand occurs at most once.

Then the next property constrains the positions of LTL and major
replenishment periods.

Property 8. Consider a demand i which is replenished in periods #(1),

%2), ... k) for E; < o(1) < «(2) < - < ”k) < L;. There exists an op-

timal solution such that

(a) if demand i has an LTL replenishment, it must occur at the first
replenishment period #(1), and

(b) if demand ¢ has a major replenishment, it must occur at the last
replenishment period (k).

5. Computing f(6, 4, »)

For notational convenience, we let ao = a(i|4, ) and Do = D(ac|4, 7).
Suppose that every demand Dy is replenished in period 1 as well as
the & units of demand i. Note that this case is possbile only when
every demand in D(i|4, y) should be crossing the period 4, i.e., D(i|4,
y) = C(i|4, y). We use fo( 6, i|4, ») to denote the cost f{ 6, i|4, y) in this
case of whole satisfaction in a single period. Then, we have

So(0:i]2,7) ,
—min K+ pa(0+Dy), if DU|A,y)y=C(i|A,y), (11)
0, otherwise.

Now we consider the other case that at least one replenishment takes

place during {A+1, A+2, ..., »~1}. In particular, we chiefly consider

two cases:

(i) the @ units of demand i are all satisfied by the replenishment in
period A,

(ii) the Aunits of demand i are satisfied not only by period A but also
by some periods during {A+1, ..., 1}

4.1 Case 1: Qunits of demand i are all satisfied by the replenishment
in period A

This case will be treated by considering two subcases

* period A replenishes only demand i, and

* period A replenishes not only demand i but also demands Dy.

We first suppose that period A replenishes only demand i. Recall that
every replenishment period during {4, ..., y~1} should be FTL pos-
sibly except for the first period A. Since demands D, are all replen-
ished during {A+1, ..., =1}, the total quantity D, must be a multiple
of cargo capacity C. Thus, the assumption that period A replenishes
only demand i leads to Do = m(Ds) or A(Do) = 0. Note that the replen-
ishment cost in period 4 is K; + p 8. We next consider the cost for
demands D,. Since they are not replenished in period 2, the cost of
satisfying them is go(ao}4, 7) by definition. Hence, the cost 6, i|4, p)
in this case is computed by the following formula:

AO,i|A, y) = Ki+ paf+ golaolA, 7).



We next suppose that period A replenishes not only demand i but aiso
demands Ds. Recall that every replenishement during periods {A+1,
..., p-1} 1s FTL and 8 units of demand i is not replenished during
them. This implies that the @ units and the partial quantity A(Dp) > 0
should be replenished in period 1. We first consider the cost for
demands D,. It is known that the supply of period 1 includes partial
amount A(Do) of demands D; but it is not known whether the supply
also includes demand a,. Hence, the cost for Do is gi(ad/4, »). Con-
sider the replenishement of & units in period A. The one-time setup
cost K; is included in gy(aojd, 7); We should not count the setup cost
in computing f{#6, i|4, ») but the cost p,6 of replenishing the € units.
Hence, we have

S, 0|4, ) = pa8+ gi(aol|d, p)-

We use fi(6, i|4, 7) to denote the cost of {6, il4, ») in the case when
the & units of demand 7 are all satisfied by the replenishment in pe-
riod 1. Combining the two formulas, we have the following complete
formula:

Ky +piaB+go(a} 4,7) if A(Dy) =0,

RO D= min{pab+ i@l 1y)  EAD)>0,  (12)
) otherwise,

where ao = a(i| A, y) and Do = dagapias

4.2 Case 2: Qunits of demand i are satisfied not only by period A but
also by some periods after A

Suppose that the first replenishment after A for demand i takes place
in period 7 € [A+], »1]. For notational convenience, we let a, =
a(ilA, ) and a; = a(i|7, 7). Based on these demands a; and a,, we also
let Dy = D{ayjA, 7} and D, = D(ay|7, 7). Since the replenishments
during [A+1, »-1] are all FTL, Property 6 suggests that the total re-
plenishment quantity is x;,.; = m(6+ D). Let 8= 6, + 6 where 6,
denotes the amount of demand i replenished in period A and & the
amount replenished during {7, =1, ..., »~1}. Then, we can easily see
that

6= 0-[m(6+ D,) - D] >0, and

6,=m(6+ D,)— D, >0.
As was done in Subsection 4.1, here we also consider two subcases
that period A replenishes only demand i, and period A replenishes not
only demand i but also demands D,. We consider the first case that
period A replenishes only demand i. In this case, we have A(D,) = 0
since demands D, all must be satisfied by FTL replenishments dur-

ing periods {A+1, ..., 7}. Using similar arguments as in (12), we can
see that

RO, 1A, ) = Ki + pa6i+ go(aijd, ) + B, |7, »).

Next consider the other case that period A replenishes not only de-
mand / but also demands D;. In this case, we have A(D)) > 0 and

A6, 1|4, p) = pi6i+ g(aild, D) + A6, i|7, 7).

We use £(6, i|4, p) to denote the cost of {6, i|4, ») in the case when

the @ units of demand i are satisfied not only by period A but also by
some periods during {A+1, ..., »-1}. With the two formulas devel-
oped above, the recursion formula for f3(6, {|4, 7) is given as

(861 4.7)
K, +piB +g(a |, 0)+f(&,i|t,y) ifAD)=0,8,6,>0, 13
=min i p:8 +ga [4,0)+ [(8:i17.7) ifA(D)>0, 8,6 >0, (13)
S otherwise,

where a, = a(i|4, 7), a, = a(ils, ), D, is the total sum of demands
D(ai|4, 7) and D, is the total sum of demands D(a|z, ). Furthermore,
6= 6~ [m(6+ D) — D,] and 6 = m(6 + D,) — D,. Then, by (11),
(12) and (13) the complete formula for {8, i|4, ) is given by

Sol8,i) 2,7),
f(8,i] 2, y)=min< £,(8,i| 4,7),
£(8,i]A4,7).

Given a value 8 and demand i, and periods A and y, the computation
of f, ilA, y) takes O(T). If all the necessary costs go(-), g1(-) have
already been found, then the time for all 8, |4, ») is O(|GnT),
where | denotes the needed value in computing an optimal solution,
0 < 6<d;. Let S(i|4, p be the set of valid values each & can take for
given demand i and periods A and y. Then, let’s investigate what
demands the set S|4, y) contains. First of all, from (10), we know
that each cost f{d,, i|A, 7) should be computed. This implies d; € S(i|4,
#). In the computation of fi(-) in (12), we note that no cost of () is
required. Consider formula (13) for f3(-), which needs the cost &, iz,
7). Here, we have to note that 6 + D, is a muitiple of C, where D, is
the total sum of demands D(a,|z, ) and a; = a(i|7, ). Suppose that
demand i has been supplied j times during {1, 2, ..., =1}. Since the
replenishments for demand i during {1, 2, ..., =1} are not major
ones, each quantity distributed to demand i is less than the cargo
capacity C (Property 7 and 8). In other words, the total sum of units
of demand i dispacthed during {1, 2, ..., =1} is less than jC. Let 4/
be the total amount of units of demand i dispacthed during {1, 2, ...,
7—1}. Then, we have 0 < d/ <jC. More precisely, we further suppose
that sC < d/ < (s+1)C for some s =0, 1, ..., =2. We note that m(d;’ +
6 + D;) =m(d’) + 6 + D, since 6 + D, is a multiple of C. That is,
we have forsomes=0,1,..., =2

m(d;+ D2)=sC+ 6+ D,.
From this equations, we can see that the valid set S(i|4, 7) also in-
cludes m(d; + D;) — sC — D, for some s =0, 1, ..., =2. Consequently,
S(i|l4, y) is given as follows:
S(il4, ») = {dy)

U {m(di + dugs, i) — SC— dagaay :5=0,1, ..., A-2}.

Hence, the number of elements in the set S(i|4, ») is at most O(T). We
therefore conclude that all the necessary computations for f6, i|4, )
require O(nT*).

6. Computing go(i|4, ) and g,({j4,

In this section we describe how to compute go(i|4, ) and g1(i|4, »).

Computing go(ii4, 7). Note that we have no demands D(i|4, y) re-
plenished in period A. Supoose that the first replenishment period for
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the demand i occurs at period 7, 4 < 7 < . Then demands D(a(i|A,
7|4, 7) are all replenished during {A+1, ..., 71} and demands D(i|,
7 are all replenished during {7, ..., ~1}. It is not hard to see that the
costs for the periods {A+1, ..., =1} and {7, ..., =1} are go(a(iid,
9|4, 7) and f{d;, i|7, y), respectively. Hence, we have

&1 4,7)= min{g,(a(i| )| 4,2)+ f(d;,i|7,7)}

A<l

Computing g,(]]4, ). We first suppose that demand i is supplied by
the replenishment in period A. In this case, we have g:(i|4, ») = fld,,
i|4, ). Next suppose that demand i is not replenished in period but
replenished first in period 7, A < 7 < 7. Then using similar arguments
for go(i]4, 7), we have gi(il4, Y = gi(a(@iA, DIA, 9 + fd, i|z, ). Thus,
we conclude that

Sdiil A7),
min{g(a(i| A,7)| A7)+ f(d.,i|7,7)}.

A<t<L

g,(i|/1,y)=min{

We need to note that go(i|4, 7) and g,(i|4, ) are computed in O(n1%) if
each fld,, ilz, y) is preprocessed. Furthermore, the computations of
go(i4, ») and g1(i|4, y) require f{6, i|z, y) where = d;. Hence, such &
belong to the valid set of S(i|7, ). Consequently, an optimal algo-
rithm is found in O(nT*).

7. Conclusion

In this paper we provided an optimal O(nT*) algorithm for a dynamic
lot-sizing model for inbound shipment planning with production time
window demands in a third-party warchouse hub. The algorithm
much relys on the special nonspeculative cost structure. The future

study needs to explore what algorithm is possible for more general
cost structures.
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