COMPONENT TEST STRATEGY
FOR COMS ON-BOARD SOFTWARE USING ATTOL

Su-Hyun PARK, Soo-Yeon KANG, Koon-Ho YANG, Seong-Bong CHOI

Korea Aerospace Research Institute, psh@kari.re kr

ABSTRACT ... COMS (Communication Ocean Meteorological Satellite) is the geostationary satellite being developed by Korea
Aerospace Research Institute for multi-mission: experimental communication, ocean monitoring and meteorological observations.
The COMS operation is controlled by the on-board software running on the spacecraft central computer. The software is written in
ADA language and developed under the software life cycle: Requirement analysis, Design, Implementation, Component test and
Integration test. Most functional requirements are tested at component level on a software component testing tool, ATTOL. ATTOL
provides a simple way to define the test cases and automates the test program generation, test execution and test analysis. When two
or more verified components are put together, the integration test starts to check the non-functional requirements: real-time aspect,
performance, the HW/SW compatibility and etc. This paper introduces the COMS on-board software and explains what to test and

how to test the on-board software at component level using ATTOL.

KEY WORDS: COMS, On-Board Software, Component Test, ATTOL

1. INTRODUCTION

COMS (Communication, Ocean and Meteorological
Satellite) is a geostationary satellite being developed by
KARI (Korea Aerospace Research Institute). It 1s planned
to launch in 2009 and designed for 7 years mission life.
COMS carries three payloads: one for meteorological
observation, another for ocean monitoring and the other
for experimental communications. One of topmost
geostationary satellite manufacturer, EADS-Astrium is
the main contractor of KARI for the joint-development of
COMS. COMS 1s based on Eurostar3000 (E3000)
satellite of EADS-Astrium.

The COMS operation is controlled by the On-Board
Software (OBS) running on the spacecraft central
computer. Based on the E3000 heritage software, the
COMS OBS is developed under the software life cycle:
Requirement Analysits, Design, Implementation,
Component test, Integration test. Both component test
and integration test are essential for the software
development of the satellite system. This paper focuses
on the component level test of the COMS OBS.

This chapter introduces the software testing concept
and a software component testing tool, ATTOL. Then,
this paper describes the functions and design of the
COMS OBS and explains the test strategy on the COMS
OBS at component level using ATTOL.

1.1 Software Testing Concept

Software testing 1s the act of exercising software with
test cases to find failures and to demonstrate correct
execution. A test case has a set of inputs and a list of
expected outputs.

There are two fundamental approaches to identifying
test cases: functional testing and structural testing.
Functional testing is based on the view that any program
can be considered to be a function that maps values from
its input to the output. This leads to the term Black Box

Testing, in which the content of a black box 1s not known,
and the function of the black box is understood
completely in terms of its inputs and outputs. Structural
testing is called White Box Testing, because the
implementation is known and used to 1dentify test cases.

One of the fundamental limitations of functional
testing is that it is impossible to know either the extent of
redundancy or the possibility of gaps corresponding to
the way a set of test cases exercises a program. On the
other hand, there are several widely accepted test
coverage metrics for structural testing. Test coverage
metrics are a device to measure the extent to which a set
of test cases covers a program. (Paul, 1995) For example,
each evaluation point (such as a true/false decision) must
be executed to meet the branches coverage.

Inputs Outputs
—
o

Figure 1 Black Box Testing

There are two levels of testing in the software
development life cycle: test the individual components
(component test) and then integrate these into subsystems
until the entire system is tested (integration test). The
component test aims at verifying most functional
requirement, while the integration test aims at verifying
the non-functional requirement such as real-time aspects,
performance, HW/SW compatibility and etc.

1.2 ATTOL

ATTOL is a software component testing tool for ADA
programs. It offers the user a language to describe the
execution of the component tests. A test plan written in
the ATTOL language is converted into a test program in
ADA through the test generator. The test program is
compiled and linked to all/part of the ADA program
under test. The ATTOL runtime must also be linked to

- 175 -

the test program to take into account of the nature of the
target environment. After the test program is executed,

the test report 1s generated automatically. Figure 3
illustrates the ATTOL test flow.

ATTOL

COVERAGE TOOL B

REPORT GENERATOR aanyzrr B

REPOR

L test flow

Figure 2 ATTO

The component tests described by ATTOL are black
box tests. By the very nature of black-box testing, it is
not possible to test variables that are internal to a
procedure. The test program generated by ATTOL only
controls the initialization of global variables and then
hands over control to the function under test. It only
regains control on return from the function.

(a) Program under test
function add (a, b: mteger)
return niteger 1s
begin

return (a + bj;
end add;

(b) ATTOL test plan

Za, b, ¢:integer;
TEST 1

FAMILY nominal
ELEMENT

VAR a. init = 1, va = init
VAR b, init = 3, va = init
VAR c, init =0, va=4
#c := add(a,b);

END ELEMENT

END TEST

Figure 3. ATTOL test plan

Figure 2 shows an example of ATTOL test plan. The
keyword init specifies the initialization part and keyword
va specifies the actual test part (expected value). After
executing the procedure ¢ :=add(a, b), the expected
value of the variable ¢ shall be 4, since the variable a and
b are 1nitialized to 1 and 3, respectively.

ATTOL works with a coverage tool to support a way
of structural testing (white-box testing). For example,
ATTOL with a coverage tool is able to check if every
branch is covered by the test program. Figure 3 shows the
ATTOL test flow with a test coverage tool.

2. COMS ON-BOARD SOFTWARE OVERVIEW

This chapter introduces the functions and the design of
the COMS OBS. The COMS OBS performs the major
functions as follows:

« TeleCommand (TC): The ground sends a sequence
of telecommands to the satellite for the satellite
operation. The OBS manages receiving and
executing the ground TC.

¢ Telemetry: The ground receives the telemetry data
from the satellite for the satellite observation. The
OBS manages formatting and emitting the telemetry
data to the ground.

« Attitude and orbit control: The OBS manages the
attitude determination and orbit control law
algorithms.

* On-board power control: The OBS manages the
charge and discharge of the satellite battery.

« Thermal Control: The OBS manages the satellite bus
and payload thermal regulation.

« Fault Detection, Isolation and Recovery (FDIR): The
OBS monitors the telemetry data to detect a failure at
function level (on-board power control, thermal
control, etc) and takes the appropriate actions to
recover the failure.

The COMS OBS is written in ADA language and
designed by the object oriented method. A software
component is implemented by an ADA object. An object
is an abstraction of a real world entity which gathers both
data and operations on those data. The data can be either
internal to the object or global to the other objects. For
the global data, the object provides the ground the
common services (Get/Set interface) so that the ground
can get/set the value of the data. There are several layers
in the object hierarchy. Each object provides services
through its own interface and uses the services provided
by the lower level objects.

Switcii-on TC 7 Switch-on action _
| Switch-off TC 7 Switch-eff action

Figure 4. Automaton diagram

An object has several mode states. The mode state of
an object can be modified by means of the dedicated TC.
For each object, an automaton diagram describes the
mode states, event and actions attached to the allowed
mode state transitions. Figure 4 illustrates an automaton
diagram. On the reception of Switch-on TC, the object
transits from OFF to ON mode state with performing
Switch-on action. One of common services, Set/Get
interface can be provided if the object is in ON mode.

- 176 -

The COMS OBS is running on the real-time operating
system, which is an in-house product of EADS-Astrium.
Tasking 1s the core of the operating system. From a
dynamic point of view, the software is a collection of
tasks working together. There are several frequency
levels of the cyclic tasks in the COMS OBS. The
scheduling, monitoring and processing of the object are
done cyclically per task frequency.

3. COMPONENT TEST STRATEGY

This chapter explains the test strategy on the COMS
OBS at component level. The relevant tool, ATTOL is
used for testing a software component with a test
coverage tool.

Basically, the test cases are identified by the black-box
~ testing approach and written in ATTOL language.
ATTOL cannot check the internal variable, because the
implementation is not known by the black-box testing
approach. All ATTOL can specify is the initial value and
the expected value of the global variables.

In addition to ATTOL, a coverage tool is used to
support the white-box testing approach. As illustrated in
figure 3, the coverage tool checks if 100% of ADA
branches are covered by the test cases. Finally, the
ATTOL test plan shall cover all of the ADA branches.

The ATTOL test plan of the COMS OBS at least
includes initialization, request management, processing,
monitoring and failure recovery. These are closely related
to the major functions of the COMS OBS as described in
chapter 2. Each functional requirement shall be tested as
much as possible at component level.

3.1 Initialization

An object 1s in charge of performing the initialization
of its data. For each object, the followings shall be
verified:

* Each automaton is initialized to a default mode state.
Generally, most automata are initialized to the OFF
mode state.

* All the global variables are initialized with their
default value.

3.2 Request management

An object 1s in charge of executing its applicable
requests (ground TC or internal TC, failure recovery).
The hierarchical architecture and object oriented design
enables to split a request management in several steps:

request dispatching, request validation/actions collection
and actions execution. -

REQUEST DISPATCHING

When a request comes from the ground, the OBS
1dentifies the object which is in charge of validating and

executing it, and then routes the TC to the appropriate
level.

The followings shall be verified at this step:

« Each TC and mterface request at an object level are
well taken into account,

e« FEach TC is well routed to the relevant low level
object.

REQUEST VALIDATION/ACTIONS COLLECTION:

For each object, the followings shall be verified.
 FEach TC shall be tested in each mode state and
transition context.

« Request rejection causes are tested: mode state
transition forbidden, unknown TC, etc.

« If specified i software requirement document, TC
rejection entailed by out of range parameter 1s also
tested.

« All the TC and Set Interface Methods action
collection are checked.

ACTIONS EXECUTION

For each object, the followings shall be verified.
« All the actions are tested.
« All the algorithms attached to this activity are tested.
» All the interfaces between each object are tested.

3.3 Processing

An object is in charge of scheduling algorithms
according to its mode state configuration on several
frequency levels.

SCHEDULING

For each object, it is validated that, for each frequency
the processings and the monitorings are scheduled as
required in the software requirement document according
to the mode state.

In order to provide the ground with the Get method, a
processing produces the value of the global variable
cyclically. The production frequency and the consuming
frequency of the Get method data are checked.

PROCESSING

All the processings are exhaustively tested at each
object level with data chosen for the branch coverage. A
test coverage tool is used to check the branch coverage
with ATTOL.

All the processing initializations are tested at object
level.

All the Get and Set methods are tested.

3.4 Monitoring

An object monitors its own data. Each monitoring at
function level (on-board power control, thermal control,
etc) shall be triggered to validate each error report update
and each immediate passivation action.

- 177 -

3.5 Failure Recovery

For each object, there are required failure recovery
scenarios according to the current mode state. When the
failure 1s detected, all the passivation actions shall be
tested.

4, CONCLUSION

The COMS on-board software (OBS) is written 1n
ADA language and developed by the object-oriented
approach. A software component is implemented by an
ADA object. An object is in charge of initialization,
request management, processing, monitoring and failure
recovery. Each software function shall be tested as much
as possible at component level. This paper introduces the
functions and the design of the COMS OBS, and explains
the test strategy on the COMS OBS at component level.

4.1 References

Paul C Jorgensen, 1995. Software Testing — A
Craftsman’s Approach. CRC Press

4.2 Acknowledgement

This work is sponsored by Korean Government with
~ the following institutions involved: MOST (Ministry of
Science and Technology), KMA (Korea Meteorological
Administration), MIC (Ministry of Information and
Communication), MOMAF (Ministry of Maritime Affairs
and Fisheries).

- 178 -

