한국경영정보학회:학술대회논문집
- 2007.06a
- /
- Pages.318-323
- /
- 2007
데이터 마이닝 기법을 이용한 직무교육 성취집단 예측모형 개발
Abstract
국방부에서 발표한 ‘국방개혁에 관한 법률’ 에 따라 2014년까지 현역병들에 대한 복무기간이 단계적으로 단축될 예정이다. 이에 따라 좀 더 효율적인 직무교육 방안이 필요하게 되어, ‘차등제 교육’을 시행하고 있다. 이 교육의 효과를 향상시키기 위해서는 훈련병들의 예상 학업 성취도를 미리 정확하게 예측하는 것이 필수적이다. 따라서, 본 연구에서는 입교 초기에 얻을 수 있는 신병들의 제한된 자료들을 이용하여 교육 성취도 예측 모형을 개발하였다. 본 모형의 목적 변수는 ‘일반관리 인원’, ‘집중관리 인원’의 값을 갖는 이진형 성취집단 변수이며, 사용된 기법은 k-means 군집기볍과 Decision Tree 기법을 혼합한 모형, k-means 군집기법과 Neural Network 기법을 혼합한 모형, Decision Tree 모형, Neural Network 모형, Bayesian 모형, 그리고 Logistic 모형 등을 사용하였다. 그 결과 k-means 군집기법과 Decision Tree를 혼합한 모형이 가장 좋은 예측력올 보이는 것으로 나타났다. 이러한 교육 성취집단 예측 모형은 향후 군에서 이루어지는 다양한 교육 프로그램에 적극적으로 이용될 수 있을 것으로 기대된다.