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1. Introduction

Discontinuous deformation analysis (DDA) method is one of the most
recently developed and powerful numerical analysis techniques. This technique
has the merits of both FEM and DEM. It has the form of a global
simultaneous equations derived by the principle of minimum potential energy
like FEM, and it can handle large displacement of blocks like DEM.

In order that DDA becomes a more practical analyzing tool, it should be
able to simulate rock supports such as rock bolt and shotcrete in rock block
analysis. As for the simulation of rock bolt, Kim (1999) and Moosavi (2006)
suggested advanced algorithms wusing connecting bars which had been
developed by Shi (1984), while the simulation of shotcrete has not been
published yet. Zhang et al.(2005) showed a new method in which FEM and
DDA were combined together and conducted in turn one after the other. This
combined method, however, allowed only small displacement and penetration
in each step, so that it is difficult to solve kinematic or dynamic problems of
rock blocks with large displacement by using the method.

In our research, a new approach to simulate the shotcrete using penalty
spring method is studied. The penalty spring method has been generally
adopted to analyse block contact or collision. When a block contacts with
another block, a contact penalty spring is set up at the contact point.
Displacement of both blocks after the contact are calculated by minimizing
the potential energy of rock blocks accumulated by the penalty spring.

In this paper, the new shotcrete support algorithm 1is explained after
introducing a basic theory of DDA, and finally, the suggested algorithm is
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verified with three simple case studies.

2. Penalty Method in DDA

In DDA, a block system is formed by contact of blocks. Assuming a block
system consisting of , blocks, the simultaneous equilibrium equations can be

expressed in a matrix form as follow.

Ky By K- K| (DY (R
By Ky Ky -+ K, || Dy | | £
Ky Ky Ky - Ky || Dy = | Fy 2.1)
[(;Lll(n2kn3" nn ] D 'a

D and F in equation (2.1) represent a 6x1 submatrix each where D)
indicates the deformation of block i while # means a loading on block 3.
Because each block has six degrees of freedom in 2D, Kj; in the coefficient
matrix (called stiffness matrix) of equation (2.1) is a 6x6 submatrix. Kj,
where ¢ # j is defined by contact between block ; and block j.

These equilibrium equations are derived by minimizing the potential energy
I1 produced by the forces and stresses. The potential energy produced by

contact between blocks is defined by the stiffness and displacement of contact

penalty spring.

C

.H::§d2 (2.2)

where, 5 and 7 are the stiffness and displacement of a penalty spring,
respectively.

The submatrix K; contains the coefficients of an equilibrium equation of

load, moment and stress exerted on both blocks in contact as follow.

=0, r=1,..,6 (2.3)

The differentiations
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—_ :0, 7':1,“_’6 (2.4)

are the free terms of equation (2.3) after shifting to the right side of the
equation. Therefore, all terms of equation (2.4) form a 6 x1 submatrix, which
is added to the submatrix F.

3. Shotcrete Support Algorithm

3.1 Definition for adopting penalty method

Figure 3.1 shows two blocks bonded by shotcrete. As shown in the figure,

block j is fixed under constraint and shotcretes are installed on 3 edges of

PP, 1731)_4 and 1_)% The supporting forces of the shotcrete work on both
lower vertices named p; and p,.

In order to adopt the penalty spring method to the shotcrete algorithm, we
firstly define supported area by 'penetrating point' and 'virtual reference line'.
Penetrating point is a reference point to measure displacement of supported
area. The potential energy of contact springs are defined by relative
displacement of penetrating point to reference line and stiffness of the spring.

Penetrating points is detected when an edge of which shotcretes are installed

contacts with other edges of same condition. For example, reinforce edge psp,

contacts with other reinforced edges p;p,and psps. Virtual reference line is set

after penetrating point is defined. The reference line is normal to the edge
containing the penetrating point. It is considered that the reference line is
included to the block when the penetrating point contacts.

The shotcrete has 3 input parameters; normal stiffness, shear stiffness and

thickness.
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Figure 3.2 two blocks bonded by shotcrete

After executing the algorithm defining penetrating points, two penetrating points and

virtual reference line is set as shown in Figure 3.2. p; of block ¢ and ps of block j

are both set as penetrating points. Because the algorithm defining penetrating points

carries out at every starting point of edges in order, ps is set as penetrating point
rather than a vertex p, of block ¢. Two virtual reference lines are set as v;v, and v,v,

when penetrating points are defined. v,v, is belong to block ;7 while vy, 1S belong to

block i.
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block j

Figure 3.2 penetrating points and virtual reference lines

A set of penalty springs are installed at a point where a reference line contacts with a
penetrating point. Then normal contact energy is defined by normal relative displacement
of penetrating point and stiffness of normal contact spring while shear contact energy is
defined by shear relative displacement of penetrating point and stiffness of shear contact
spring. Both normal and shear displacements are controled by tensile force and shear
force of supporting area. So the stiffness of normal and shear springs represent tensile
and shear stiffness of shotcrete, respectively.

The derivation of the potential energy of shotcrete are almost same with derivation of

block contact energy (Shi, 1984). The submatrices derived by shotcrete potential energy

are derived in the following chapter.

3.2 Submatrices of a Contact Spring

Assume that there is a spring between a point P, and a reference line PP
(% yi) and (ui, vi) denote coordinates and the displacement increment of point £,

respectively. Then we have the distance d, from point P, to line F,F; as equation

(3.1)
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d =

n

4
l

where length of reference line is set as unit length.

1 zytyy gty 1oz oy 1w oy |12 v 1wy vy
1 zytuy, yotu=|1 Ty yy|t|1 uy Yol+|1 To Vy+|1 uy vy (3.2)
1 z3tug ystogl (1 @3 wysl 11 ug ysl 11 x3 vyl 11 ug v

The last term of equation (3.2) is a second order infinitesimal which can be

neglected. Then from (3.2) we have

1 up yp 1 2 vy
d, = &+[1 Uy Y+l Ty vy (3.3)
1 uz g3 11 x5 v

where S, is a first term of (3.2)

dn=51)+u1(y2—y3)+vl(x3—m2) 3.4)
+u2(y3—yl)+vz(m1—x3)
+u3(y1 —y2)+v3(x2—x1)

dn=55+((y2—y3) (1;3—-:1:2))[7;(.1:1,%)][1)1-] (3.5)
+ ((yg_y1) (51;1 _5133))[]1]'(372’ yg)][l)]]
+ (v~ 1) (=2 ) T(z5, y3)] (D))

where [Tz(mz,yl)] and [DJ are deformation matrix and displacement variables

of block 7.
let
Y27 Y
[H#] =¥ (2,9, )]T(xz _;;) (3.6)
Ys—Yy B~y
Lo E TN i) For T

- 218 -



then
(3.5)

The stiffness of normal penalty spring is p, then the strain energy moving
the stiff spring of shotcrete a distance of d, results in

I =

ns

d2 (3.6)

RS

— 21D+ 611Dl + 5,)°

=%([D]T[H][H]T[D]+[D]T[G][G]T[D]+2[D]T[H][G]T[D]
+285 (D)7 [H] +25,[D)T[Gl+ 59)
Minimizing II,, by taking the derivatives, four 6x6 submatrices and two
6x1 submatrices are obtained and added to [[(;l],[fgj],[ff;l],[f%],[ﬁ'] and

[17;] respectively. The derivatives of I, are as follows.

plHIH"

— (K], i=1,n (3.7)
plH[G)T -  [K),  ij=1-n
plAIHT - (K],  4j=1n
p[G][G]T - [[(jj]a J=1n
-pSlH - [Fl,  i=1lm
-p&lGl —  [E] j=1,-n

Submatices of shear penalty spring can be derived by similar method of
normal penalty spring. The only difference comes from the definition of shear
displacement of penetrating point. Assuming that penetrating point moved from

P to P, in a step, shear displacement d, can be defined as follows.

d,=PP « PP, (3.8)
(o tu.)—(z, +u )
= ((131 +U1)_(-T0 +Uo) (y1+v1)_(yo+vo)) (yz+vz)_(y22+v22)
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neglecting second order infinitesimal

U — U
dsst-i-(xs—% y3—y2)(1 0)’

by 1, (3.9)
U
d, = 8+ (23—, ys—yz)(zl)—(xrxa yz—ys)(vo)
1 0
where
Tqa— X
Sy = (2~ yl—yo)(yz_yj) (3.10)
Ta— X ,
N] =Tz, s 2), | 3.11
V] = [T:(a, ym(ys_% G.11)
Lo ™I
[A@:m(%,yo)](yz_yj
then from (3.11) we have
d, = [N)'(D]+ )" D]+, (3.12)

Let stiffness of shear penalty spring is f, then the strain energy of moving

the stiff spring of shotcrete a distance of d, is

_f
Hss _E
= LMD+ 07D)+ 5,7

d (3.13)

— L(DTMIMTID)+ (D) (371D + 2D M [ [D)
+28,[D)7[M+28,(D)"[M] + S?)

Minimizing II,, by taking the derivatives, four 6x6 submatrices and two 6x1
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submatrices are obtained and added to [K;l],[f(ﬂ],[f(;l],[ffn],[l’—;] and [F]]

respectively. the derivatives of II,, are as follows.

[](u], i=1,n

[K;j]’ 1,7 =1,n
[K;‘i]a 1,J=1,n
[[(}j], j=1,"n
[}7;], i=1,n

[F;]a .7= ].,,’I’l

(3.14)

=

=

~
Ll

3.3 Shotcrete Failure

Contact panalty spring in DDA contacts algorithm is determined to be installed or to
be removed by Open-close iteration. In our research, meanwhile, shotcrete penalty spring
does not need iteration, but needs failure condition. The failure of the installed shotcrete

penalty spring is determined by tensile force and shear force acting on it.

Tensile force and shear forces acting on installed shotcrete are denoted F, and F,.

Measuring the displacement of penetrating point, We have

F=p +d, F =p, +d, (3.15)

where d, d, p,, and p, are shear displacement, normal displacement, normal spring
stiffness and shear spring stiffness, respectively.
The shotcrete failure occurs when these forces exceed the resistant capacity of

shotcrete. The resistant capacity of shotcrete is defined by tensile and shear strength and

shotcrete thickness. Failure condition, therefore, can be defined as follows.

Ip, * d,|>07pt or p,ed, >0t (3.16)
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where, o, is tensile strength of shotcrete, o, is shear strength of shotcrete and t is
thickness of shotcrete.
If the failure condition satisfies (3.16) in a step, then the shotcrete penalty spring will

be removed from next step on.

4. Validation

Firstly, new shotcrete algorithm was verified by using "simple key block as
shown in Fig. 4.1. In this model, the triangular key block is generated under

a upper block.

(a) case2: 0.01m thick shotcrete (b) case1: 0.02m thick shotcrete

Figure 4.1 Sing key block test

By the weight of key block itself, the block must be loaded at least 0.3
MPa to be supported. Then we installed shotcrete which has its tensile and
shear strenth as 10 MPa/m. Figure 4.1 shows two different results with
different  shotcrete  thickness. Fig. 4.1(a) shows the result where
0.01m-thick-shotcrete is installed, while Fig. 4.1(b) shows the result where
0.02m-thick-shotcrete is installed. Load acting on shotcrete is 0.15 MPa, which

is caused by weight of the overlying key block. The resistant capacity of
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shotcrete is 0.1 MPa in Fig. 4.1(a) while 0.2 MPa in Fig. 4.1(b). Both two
results agree with predicted results. By further tests with increasing shotcrete
thickness, the key block was dropped when the thickness was over 0.015m.
Therefore, we can conclude that the installed shotcrete works and fails

correctly. Table 4.1 shows some input parameters.

Table 4.1 Input parameters for key block test

Unit mass 2.5 t/m® Normal spring stiffness 10 GN/m
Young's modulus 10 GPa Shear spring stiffness 5 GN/m
Poisson's ratio 0.24 tensile strength of shotcrete 10 MPa
Friction angle of joints 35° shear strength of shotcrete 10 MPa
cohesion of joints 0 Initial time step 0.01 sec

Second example used is discontinuous bar consists of 5 blocks. It is broken
as Fig. 4.2, when shotcrete is not installed under it. Input parameters are
same as Table 4.1 except for the strengths of shotcrete. The length and
height of bar is Im and 10cm respectively. The crosses at center of blocks
presents principal stresses of the block. To prevent the collapse of the bar,
shotcrete is installed over bottom of the bar with sufficient thickness and
stiffness. Then, the bar was kept intact as shown in Fig. 4.3. Principal

stresses of each blocks were approximately same with predicted one.

N1/ N7 - NS N/
‘ 7\

(a) before analysis (b) after 1,000 steps

(c) after 3,000 steps (c) after 4,000 steps

Figure 4.2 Result of discontinuous bars without shotcrete
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Figure 4.3 Result of discotinuous bars with shotcrete

Lastly we applied the new shotcrete algorithm to a simple tunnel geometry. The tunnel
geometry is as shown in Fig. 4.4. Fig. 4.5(a) shows that The tunnel loops was
collapsed without any support. Then we supported tunnel by iﬁstalling shotcrete on its
loop and sidewall. Fig. 4.5(b) is DDA result when we installed shotcrete on the
sidewall. We could find that key block on the loop was droped while sidewall was
supported by the shotcrete. Fig. 4.5(c) is the DDA result when the shotcrete was
installed both on the loop and sidewall. As shown in the figure, the tunnel section was

supported safely by shotcrete.

Figure 4.4 The Tunnel geometry for DDA analysis
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(a) casel (b) case?2 (c) case3

Figure 4.5 DDA result of the tunnel analysis

5. Conclusions

In this paper, shotcrete support algorithm using penalty spring method was
developed. By defining penetrating point and virtual reference line, we could
derive submatrices of shotcrete penalty spring which were added to global
matrix. Though mathematical process was similar with contact penalty springs,
the shotcrete penalty spring needs its failure condition rather than open-close
iteration. The penalty spring works when an edge on which shotcrete was
installed contacts with other reinforced edge. Also, it fails when tensile force
or shear force exceeds its resistant capacity. As verified by 3 simple case
studies, the shotcrete algorithm worked well when it was installed on any
edges, and removed successfully when it failed. From this study, shotcrete

support algorithm can contribute to make DDA more practical analyzing tool

for blocky system models.
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