Classification Protein Subcellular Locations Using n-Gram Features

단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측

  • Kim, Jinsuk (Korea Institute of Science & Technology Information (KISTI))
  • 김진숙 (한국과학기술정보연구원)
  • Published : 2007.11.16

Abstract

The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.

단백질의 기능은 그 기능을 발휘하는 세포내의 위치와 밀접한 연관이 있다. 따라서 새로운 단백질의 서열이 밝혀지면 이 단백질의 세포내 위치를 규명하는 것은 생물학적으로 매우 중요한 일이다. 이 논문에서는 단백질의 n-그램과 kNN (k-Nearest Neighbor) 분류기를 이용한 새로운 세포내 위치예측 방법을 다룬다. 이 방법은 입력 단백질 서열과 가장 유사한 가중치를 가지는 k개의 단백질이 가지는 세포내 위치 정보들을 취합하여 입력 단백질의 세포내 위치를 추정한다. 단백질간의 유사도 가중치는 두 단백질서열의 5-그램 자질의 유사도를 비교하여 계산된다. 단백질의 세포내 위치예측 정확도를 검증하기 위해 SWISS-PROT 단백질 데이터베이스로 부터 세포내 위치가 알려진 51,885개의 서열을 추출하여 대용량 테스트 컬렉션을 구축하였으며, 다른 연구자들이 제공하는 또 하나의 소용량 테스트 컬렉션을 실험에 사용하였다. 이 논문에서 사용한 예측방법은 대용량 테스트컬렉션에 대해 약 93%의 정확도를 보여주었으며, 소용량 데스트컬렉션을 이용하여 이전 실험과 비교하였을 때도 이 방법이 다른 시스템에 비해 성능이 우월함을 알 수 있었다.

Keywords