T-P50 ## Changes in the electronic structures and optical band gap of Ge₂Sb₂Te₅ and N-doped Ge₂Sb₂Te₅ during phase transition 장문형¹, 김영국¹, 박승종¹, 조만호¹, 황정남¹, 이연진² ¹연세대학교 물리 및 응용물리 사업단, ²한국표준과학연구원 첨단산업측정그룹 Changes in the electronic structures of Ge₂Sb₂Te₅ (GST) and N-doped Ge₂Sb₂Te₅ film during the phase transition from an amorphous to a crystalline phase were studied using synchrotron radiation high-resolution x-ray photoemission spectroscopy. The changes in tetrahedral and octahedral coordinated Ge 3d peaks are closely related to the changes in the chemical bonding state of GST films. The metallic Sb peak in the Sb 4d spectra of annealed GST films demonstrates that the metallic Sb atoms become segregated during thermal treatment resulting in phase separation. The incorporation of nitrogen into the GST film affects its structure and chemical bonding state, resulting in the suppression of crystallization. The incorporation of nitrogen also increases the optical band gap of the film due to the formation of a nitride.