T-P37 ## Surface Charge Effects of ZnO Nanorods Growth <u>이용병</u>¹, 박순홍², 서수영¹, 곽창하¹, 김선효¹, 한상욱³ ¹포항공대 신소재공학과, ²포항산업과학연구원 부품신소재연구센터, ³전북대 과학교육학부 We investigated the influences of charges near the substrate surfaces on vertically aligned ZnO nanorod growth. ZnO nanorods were fabricated on Al₂O₃ and n-GaN substrates by a catalyst-free Metal Organic Chemical Vapor Deposition (MOCVD). H⁺ ions with total flux of 10¹⁶cm⁻² and 10¹⁷cm⁻² were directly implanted on Al₂O₃ and n-GaN substrates and subsequently, ZnO was deposited on the ion-implanted substrates *ex-situ*. The ion energy was 120 keV. From field emission transmission electron microscope measurements we could confirm that H⁺ ions mostly existed in the depth around 570 nm and 300 nm from the surfaces of Al₂O₃ and n-GaN, respectively. In spite of the ion implantation, the surface damage was negligible. The ZnO deposited on the substrates were amorphous films or formed into low-quality nanorods. Since the ZnO nanorods are well-grown on untouched Al₂O₃ and n-GaN substrates, we concluded that the external surface + charges prevent ZnO forming into high-quality nanorods. Our observation strongly suggested that the surface charge is one of the important factors to contribute to the ZnO nanorod growth, and that for the high quality ZnO nanorod growth, Zn²⁺ atoms should bond first with the substrate surface.