T-P08

Optical Properties of SiNx Films by Catalytic CVD at Low Temperature (<200℃)

Kyoung-Min Lee¹, Tae-Hwan Kim¹, Seunghun Jang², Sunghwan Won¹, Junghyun Sok¹, Kyoungwan Park¹, Wan-Shick Hong¹ and Moonsup Han²

¹Department of Nano Science and Technology, University of Seoul, Seoul 130-743, Korea ²Department of physics, University of Seoul, Seoul 130-743, Korea

As there is a wide range of evolutions to the ubiquitous computing circumstance, device integration on to nonconventional substrates is required. In order to develop devices on plastic substrates, we need to study how to manufacture semiconductor and insulator films at a "low temperature".

In this work, we have deposited Si rich silicon nitride films using catalytic chemical vapor deposition (Cat-CVD) at a low temperature ($<200^{\circ}$ C) for photonic devices. Source gases were NH₃, SiH₄, and control parameters were filament temperature (1650° C $\sim 1850^{\circ}$ C), process pressure (100° mTorr $\sim 200^{\circ}$ mTorr), gas mixture ratio ([NH₃]/[SiH₄] = $49/1 \sim 48/2$). Defect states and the band gap were measured by photoluminescence spectroscopy (PL), and x-ray photoelectron spectroscopy (XPS). In addition, to fabricate Si nano-clusters in the Si rich silicon nitride films, additional experiments were performed by observing the change of photoluminescence with introduction of H₂ gas.