T-07 ## O-Vacancy-H₂ Complex in ZnO as the Electrically Inactive Hidden Hydrogen Species and its Activation ## Yong-Sung Kim Korea Research Institute of Standards and Science I investigate the defect complexes in ZnO, consisting of an oxygen-vacancy and a hydrogen pair, using the density-functional theory calculations. In H-rich n-type ZnO, the oxygen-vacancy-dihydrogen (V_O - H_2) complex in the configuration of the two Zn-H-Zn bonds is found to be more stable than the H substitutional at the oxygen site (H_O^{1+}) or the H interstitial (H_i^{1+}) in its lowest energy configuration. The V_O - H_2 complex is a deep double donor and electrically inactive in the ground state. However, upon excitation, the ionized (V_O - H_2)²⁺ is found to decompose into the two atomic forms of H_O^{1+} and H_i^{1+} . The experimentally observed photo-sensitivity of the g=1.96 shallow donor electron-spin-resonance and the observed increase of the atomic H interstitials during the thermal annealing of hydrogenated ZnO can be explained with the V_O - H_2 model.