S-P19 ## Electron beam irradiation effects of graphene layers grown on 6H-SiC(0001) <u>Ki-jeong Kim</u>^{1,2}, Han-Koo Lee³, Junghun Choi², Tai-Hee Kang¹, Y. H. Han⁴, B.C. Lee⁴, Sehun Kim² and Bongsoo Kim^{1,3} ¹Pohang Accelerator Laboratory ²Department of Chemistry and School of Molecular Science (BK21), KAIST ³Department of Physics, POSTECH ⁴Lab. For Quantum Optics, KAERI Graphene layers grown on 6H-SiC(0001) were irradiated with 1 MeV electron beam to functionalized its surface. Surface morphology change of atomic force microscopy and near edge X-ray adsorption fine structure spectra of C K-edge show that graphene layer was changed by the electron beam irradiation and induced C-O related chemical structures. But Si 2p core-level spectra show a negligible effect upon electron beam irradiation. These suggest that even though graphene layer was reacts with the electron beam, it acts as protection layer on SiC wafer.