## S-P05

## Core-Hole Screening Modulation in CO adsorbed on Copper Quantum Wells

HL-D. Kim<sup>1</sup>, W. Kim<sup>2</sup>, C.-H. Min<sup>3</sup>, I. Kim<sup>4</sup>, M. B. Hossain<sup>5</sup> and C. Hwang<sup>2</sup>

<sup>1</sup>Pohang Accelerator Laboratory

<sup>2</sup>Korea Research Institute of Standards and Science

<sup>3</sup>Seoul National University

<sup>4</sup>Chonnam National University

<sup>5</sup>Chungnam National University

C 1s core-level spectra of CO adsorbed on copper quantum wells grown on an fcc-Co(100) film were investigated. Varying the thickness of copper thin films, an intensity modulation of a well-screened peak in C 1s spectra was observed, which is correlated with an spectral intensity modulation at the Fermi level at normal emission with  $h\nu = 83$  eV. This behavior may be explained by the charge transfer from the Fermi level to the  $\pi^*$  antibonding level of CO pushed down below the Fermi level due to core-hole attraction.