S2-06 ## Initial reactions of Al₂O₃ films on Si(001) grown by atomic layer deposition: in-situ synchrotron radiation photoemission spectroscopy 김석환^{1,2}, 박호영^{1,2}, 백재윤², 김민국², 전철호², 안종렬², 황찬국³, 황한나³, 박종윤², 안기석¹ ¹한국화학연구원, ²성균관대학교 물리학과, ³포항가속기연구소 Recently, a scaling-down tendency for electronic devices bring about changes in both deposition technique and material of ultrathin layers. First of all, Atomic layer deposition (ALD), most promising method, has provided good solution for various ultrathin layers with certain advantages such as layer by layer control of the film thickness, uniform roughness, and appropriate chemical stoichiometry. As one of high dielectric materials, Al₂O₃ has attracted interest due to the thermal stability in contact with Si, a large band gap (9 eV), and a high dielectric constant (k=9.8). However, the initial reaction to form a Al₂O₃ layer on Si substrate has not been elucidated in spite of an importance of the interface status in ultrathin film. Therefore, the interface formation should be investigated using ALD method which providing highly uniform films with thickness control to the atomic layer level. In this study, initial reactions and interfacial characteristics of ultra-thin Al₂O₃ films were investigated with in-situ layer-by-layer deposition and analysis using ALD method and synchrotron radiation photoemission spectroscopy, respectively. At the first, H₂O/Si(001), terminated by -OH and -H, was used as a starting substrate. The chemical compositions and electronic structure at each cycle of ALD processes were analyzed by measuring core-level spectra of Al 2p, O 1s, and Si 2p and valence band spectra, respectively. As a result, core-level spectra reveal that the initial ALD reaction produce a ultrathin interface layer composed of Al₂O₃, Si oxide, and Al-silicate. Al₂O₃ layer increased upon repeating ALD cycle, but small amount of Si oxide and Al-silicate still remain in the interface. On the other hand, valence band offsets between Al₂O₃ layer and Si are saturated to the similar value of Al₂O₃ film (3.72eV) after 3rd cycle. This suggest that ultathin Al₂O₃ insulating layer is formed after 3 cycle of ALD process notwithstanding the formation of Si oxide and Al-silicate.