Study on Indium-free and Indium-reduced thin film solar absorber materials for photovoltaic application

  • ;
  • 김규호 (영남대학교 신소재공학과)
  • Published : 2007.11.06

Abstract

In this report, Indium-free and Indium-reduced thin film materials for solar absorber were studied in order to search alternative materials for thin film solar cell. The films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ were deposited using mixed binary chalcogenides powders. From the film bulk analysis result, it is observed that Cu concentration is a function of substrate temperature as well as CuSe mole ratio in the target. Under optimized conditions, $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ thin films grow with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^4$ $cm^{-1}$. $Cu_2ZnSnSe_4$ film shows a 1.5 eV band gap. On the other side, an increasing of optical band gap from 1.0 eV to 1.25 eV ($CuInSnSe_2$) is found to be proportional with an increasing of Zn concentration. All films have a p-type semiconductor characteristic with a carrier concentration in the order of $10^{14}$ $cm^{-3}$, a mobility about $10^1$ $cm^{2{\cdot}-1.}S^{-1}$ and a resistivity at the range of $10^2-10^6$ ${\Omega}{\cdot}m$.

Keywords