Characteristics of π -type attenuators using Ti(N) thin film resistors

Nguyen Duy Cuong^a, Dong-Jin Kim^b, Byoung-Don Kang^{a,b}, and Soon-Gil Yoon^a*

^aDepartment of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejon, Korea.

^bKMC technology, Panam Techno-Town 103, Panam-dong 239-2, Dong-gu, 300-130, Deajon, Korea.

Corresponding author: sgyoon@cnu.ac.kr

Abstract: We report the effect of the film thickness on electrical properties of Ti(N) film resistors. The applications of titanium nitride thin film resistor in Π -type attenuators are also characterized. As film thickness decreases from 100 to 30 nm, temperature coefficient of resistance significantly decreases from -60 to -148 ppm/K, while sheet resistance increases from 37 to 270 Ω/\Box . The characterizations of 20dB-attenuators using thin film resistors are improved in comparison with those using thick film resistors. The Π -type attenuators using Ti(N) thin film resistors exhibit a attenuation of -19.94 dB and voltage standing wave ratio of 1.16 at a frequency of 2.7 GHz.

Key words: Ti(N), Π-type attenuator, attenuation, VSWR.