Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2007.05a
- /
- Pages.1972-1976
- /
- 2007
Hydrologic Time Series Forecasting using SVM
SVM을 이용한 수문 시계열 자료의 예측
- Published : 2007.05.17
Abstract
정확한 수문자료를 예측하기 위한 많은 연구들이 현재까지 진행되어 왔다. SVM(Support Vector Machine)은 그 구조가 신경망과 유사하나 신경망과는 다르게 철저히 통계적, 수학적 이론에 기반을 두고 있고 비선형예측 모형이며 지역해 문제가 발생하지 않는 다는 점 등으로 인해 상당히 견고한 모형으로 평가받고 있다. 본 연구에서는 두 경우의 수문시계열 자료를 이용하여 전통적인 통계학적 모형과 신경망 모형 그리고 수문학 분야에서는 아직까지 적용된 사례가 매우적은 SVM 모형의 예측 결과 비교를 통해 모형의 장단점을 평가하였다. 비교 결과 SVM 모형은 수문시계열 자료 예측에 있어서 기존의 방법들에 비해 안정적이고 정확한 예측 결과를 보여 주었다.