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Abstract 

 
It is not always convenient to consider isotropic meshes where the edge length depends on the orientation 
of the edge. It is desirable to go for anisotropic mesh strategy instead. There are many instances where the 
solution shows directional features such as great variations along certain directions with less significant 
changes along other ones. Anisotropic meshes considered to be worthy in these cases. By using anisotropic 
elements we can resolve the solution accurately with few elements. Many techniques have been used as a 
common feature that the shape, size and orientation of the triangle elements are controlled by specifying 
metric tensor. This paper attempts at clear understanding of the estimation and equidistribution of the error 
and discusses the parameters like reliability and effectivity of an anisotropic mesh in a mathematical 
manner. Also we study some of applications of anisotropic mesh. 
 
 

1. Introduction 
 
Many physical problems exhibit anisotropic 
solution features which changes from one direction 
to another[4]. A properly chosen anisotropic mesh 
can be advantageous for significant gain on 
improvements in accuracy and efficiency.  It is 
desirable to use anisotropic elements, where the 
edge length depends on the orientation of the 
edge[8]. By using anisotropic elements we can 
resolve the solution accurately with few number of 
elements. Distribution of anisotropic elements in a 
mesh is controlled by specifying a symmetric 
metric tensor. It is this tensor which controls shape, 
size and orientation of the elements. In general 
these metrics are constructed upon error estimation.   
 
 
Generalizing anisotropic mesh adapting strategies 
into four steps: 

1. Calculating an approximate (numerical) 
solution. 

2. estimating the error locally and globally. 
3. Determining an appropriate aspect ratio 

and stretching direction of the finite 
elements. 

4. Generating an improved mesh. 
 
There are many instances where the solution shows 
directional features such as great variations along 
certain directions with less significant changes 
along other ones. Examples include those having 
boundary and inner layers, shock waves, contact 
interfaces, and edge singularities. 
 
From the classical finite element theory, aspect 
ratio can be defined as a ratio of diameter of the 
finite element k and supremum of the diameters 
contained in k (s).  (The aspect-ratio of a mesh is 
the maximal aspect-ratio among its elements). 
Anisotropic elements are characterized by [10] 
         

             
de
s
→∞                                                (1) 
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Where the limit can be considered as h (size 
function)→ 0 (near edges). 
This paper attempts at clear understanding of the 
theoretical aspects of the anisotropic meshing. 
 
2. Error estimation and equidistribution 
 
Anisotropic metric is constructed using an 
posteriori error estimate based on discrete 
approximation of the Hessian of the solution at the 
mesh nodes. The approximation error between an 
exact solution and a computed finite element 
solution is difficult to estimate in general but, 
according to Cea’s lemma, it is bounded by the 
interpolation error for elliptic problems [2]. 
Practically, this relation holds for a large class of 
problems and the interpolation error is commonly 
used as an error estimator for adaptive mesh 
generation.  
 
For a langrange finite element discretization of the 
variable u, the interpolation function is defined as  
                                         

( ) ( ) ( )i ih
i

u x X x u x=∑∏                                   (2)                                                           

Where ix  is the location of the node i. 
On expanding the variable u into a Taylor series at 
x 
                                          
( ) ( ) ( ) ( ) ( )1. ,u y u x u x y x R x y= +Δ − +                     (3)                           

 
 
 Remainder,  

( ) ( ) ( )( )1
1, .
2

R y x y x H u y x= − −                       (4)                                                                              

H is the Hessian (matrix of second derivatives), 
evaluated somewhere between points x and y. 
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Upon plugging xi for y and expanding and using 
these equalities  

( ) 1i
i

X x =∑ ,        ( )( )i i
i

X x x x=∑ . 

One obtains, 

( ) ( ) ( ) ( )1 ,i ih
i

u x u x X x R x x− =−∑∏    (7)                                 

(7)    
And we compute, 

( ) ( ) ( )1max ,ih
u x u x C R x x− ≤∏         (8)

                       
Where C is the generic constant. 
 
Now again, 

( ) ( ) ( )maxmax , T
h

u x u x C p H u p− ≤ 〈 〉∏ r r
       (9)                                

( ) ( ) ( )1
1 2 1 2

2

0
,
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λ
λ

⎛ ⎞
= Λ = ⎜ ⎟

⎝ ⎠
           (10)                                

 
 
 
 
  
 
 
 
 
 
 
 
 
Fig. 1. Geometric interpretation of metric tensor 
 
 
Components of the column matrix R are the 
eigenvectors, provide the directions of the semi-
axis of the ellipse circumscribed by the element k. 
Eigen values h1 and h2  measure the length of the 
semi-axes. Hence it can be inferred that shape and 
orientation of the evrey triangle can be controlled 
by eigenvectors and eigen values. 
 
Now let M be a positive definite symmetric matrix 
such that, 
 

( )max , ,T Tp H u p p Mp〈 〉 ≤ 〈 〉
r r r r

 

Now (9) becomes , 
 

( ) ( ) max , T
h

u x u x C p Mp− ≤ 〈 〉∏ r r  

This can be written as 
 
( ) ( ) 2

h M
u x u x C p− ≤∏                     (11)                            
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It follows that the errors of the interpolation will 
get bigger the higher the curvature of the function 
of the variable u and the bigger the elements. The 
above relation relates the interpolation error to the 
square of the largest edge length in k with respect 
to the metric M. 
Now for equidistribution of error let [3], 

, T
ep Mp η〈 〉 =

r r
 

 

, 1Tp Mp〈 〉 =
r r

; where ;T

e

MM R R
η

= = Λ%  

( );idiag λΛ = %%  

And 2 2
max minmin max , , ;i

i
e

C
h h

λ
λ

η
− −⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
%  and 

the target size along ei is 1/ 2
i ih λ−= . hmax and hmin 

are the maximum and minimum allowable target 
sizes while the constant C controls the error, and 
consequently final number of meshes. In 
(Yamakawa and Shimada 2000)anisotropy is 
defined by principal directions and an aspect ratio 
in each direction. The principal directions are 
represented by 1er  and 2er  as shown in fig.1, and in 
these directions the amounts of stretching of a 
mesh element are represented by two scalar values 

1λ%  and 2λ% [1]. 
 
Metric adaptation algorithms perform local or 
global operations to enforce the target size, 
stretching, and orientation prescribed by the control 
metric. 
 
 

3. Edge length 
 
For an edge 1 2p p  in the domain let 

( ) 1 21tp t p tp= − +
r

 be a parametric description 

for the segment 1 2p p , then its metric length 
defined as   
 

( ) ( )( )
1

2 1 2 1
0

T
tp p M p p p dt− −∫
r

. 

 
It has been shown that the adaptation process is 
equivalent to requiring all the mesh edges to have a 
unit metric length [2]. This is the reason for 

perfectly adaptive meshes being called as unit 
meshes. 
 
By linearly interpolating metric 

( ) ( ) ( ) ( )1 21tM p t M p tM p= − +
r

, 
approximating segment length as, 

( )
1 2 2

2 2 2 1 1 2 2
2 1 1 2 1

1 20

2
3M

l ll lp p l t l l dt
l l
+ +

− = + − =
+∫         (12)                           

 

Where ( ) ( )( )1,2 2 1 2 1
T

i il p p M p p p= = − −
r

      

 
4. Reliability and effectivity 

 
For any mesh on domain, it is desirable to define 
two important terms namely: reliability and 
effectivity[10]. As stated earlier the error first 
estimated element wise ( )eη  which then leads to 

the estimation of global error ( )η . 
We designate true error per element 

( ) ( )h
u x u x−∏  as tolerance eλ , then 

The error estimator should not undermine the eλ  
in the norm of a space of element. This is reliability 
for an element. 
 
That is,  e eη λ≥ .                                              (13) 
 
Anisotropic Error estimator for an element can be 
given by[9] 

( )
1

2
1 0 12 p

e ka rea p hη λ=                  (14)                                 

 
Then substituting for area of the element we can 
have following equation 

( ) ( ) ( )
1

2
1 2 2 3 1 0 1

12
2

p

e
k

M p p p p p hη λ⎛ ⎞= − × −⎜ ⎟
⎝ ⎠

       (15)                                 

 
The global error estimator is given by, 

1
p

p
e

k
η η⎛ ⎞= ⎜ ⎟

⎝ ⎠
∑                                                (16)                                 

For Euclidean norm ,  

             

1
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Also error estimator should not overestimate the 
tolerance. This is the effectivity of a mesh element. 
             
             e eη λ≤                                                 (17)                                                                                                         
It avoids unnecessary refinements. This property 
often can be ensured locally, but up to some 
constant and with respect to some domain of 
influence at the right hand size. 
 
We define the ratio of estimated error and the 
tolerance as effectivity index. In particular, it is 
desired that the effectivity index approaches to one, 
as the exact error tends to zero. 
 

5 Applications of anisotropic mesh 
 

In the data fields of computational fluid dynamics, 
anisotropy arise from flow features such as rapid 
variations, or discontinuities, in pressure (shock 
waves), density (contact surfaces), velocity 
components (boundary layers, shear layers). As 
stated earlier, the information for controlling the 
improvements in the new mesh is summarized in a 
metric tensor, which is stored as a part of the old 
mesh, which we will refer to as the control mesh. 
Moreover, the tensor data is stored as the size of 
the scales for the triangles, the orientation of this 
length scale and a stretching ratio, giving the ratio 
of the longer to the shorter length scale[5]. 
 
Figure shows an example of an unstructured, 
anisotropic mesh generated to support the 
computation of the flow around an aerfoil.  
                 

 
 
Fig2. Anisotropic mesh for flow past an             
aerofoil ,    Courtesy: M-G Vallet ,[7] 
 
                                                                                                  
Fig 3. shows initial mesh obtained by Delaunay 
triangulation algorithm. The adapted mesh 

obtained by anisotropic mesh is shown in figure 4. 
for solving the simple elliptic PDE. 
 
 
The poisson’s problem is given by, 
 

1u−Δ =  on D ,       0u =  on  D∂ , 
 
Where Δ  is the laplace’s differential operator, D  
is the ‘ L ’ shaped domain. D∂  is the boundary of 
the domain. 
 

 
                 Fig 3. Initial mesh 
 
 

 
  Fig 4.   Anisotropic refinement of ‘L’ shape 
domain        
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6. Conclusion 
 
In this paper, theoretical knowledge adapted for an 
anisotropic adaptation mesh scheme is presented. 
Construction of metric tensor and role of the same 
in generating anisotropic mesh is presented in 
detail. Mathematical expression for edge length of 
anisotropic triangle has been carried out. Mesh 
properties like reliability and effectivity are being 
derived mathematically. Finally the adaptation 
scheme is utilized in MATLAB to solve Poisson’s 
problem. 
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