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Abstract 
Many papers have studied computer-aided simulations of elastic bodies undergoing large 
deflections and large deformations. But there have been few attempts to validate their numerical 
formulations used in these studies. The main aim of this paper is to validate the absolute nodal 
coordinate formulation (ANCF) by comparing the results to experimental measurements on 
beams. Physical experiments with a high-speed camera were carried out to capture the large 
displacement of the beam and to verify the results of computer simulations. To consider the 
damping forces, the Rayleigh’s damping and quadratic damping are employed and compared to 
the experimental results, respectively. Numerical results obtained from computer simulations 
were compared with the results from the physical experiments according to the 1st mode and the 
2nd mode of the beam, respectively. 

INTRODUCTION 

The absolute nodal coordinate formulation (ANCF) is a new finite element technique 
proposed for modeling of large displacement and large displacement problems in 
flexible multibody dynamics [1, 3]. It produces finite elements that can represent 
arbitrary large displacements relative to a global frame of reference. The elements 
employ finite slopes as nodal variables and are generalizations of ordinary finite 
elements that use infinitesimal slopes. 

In this paper, physical experiments with a high–speed camera were carried out to 
verify damping characteristics of a beam. Markers are attached to the end of the beam 
and the motions of the markers are traced by a data acquisition system. The beam was 
located on vertical direction and was excited horizontal direction. Numerical results of 
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the first mode beam, using damping forces that were calculated from Rayleigh’s 
proportional damping [2] and quadratic damping [4], were compared with experimental 
data. Also, Numerical results of the second mode beam, using damping force that was 
calculated from Rayleigh’s proportional damping and quadratic damping, were 
compared with experimental data.  

MEASUREMENT OF LARGE DEFORMATION 

Experimental setup 

In the large displacement test, the choice of the material is the most important thing. It 
must be very flexible and elastic but not plastic. A very thin beam used in this study has 
500 mm length, 5 mm width and 0.5 mm thickness. A high-speed camera was used to 
capture the motion. The high-speed camera, REDLAKE Motion Scope 1000s, was set at 
500fps for the purpose of this test. Figure 1 shows the high speed camera used in this 
study. Figure 2 shows the beam with a jig.  

       

Figure 1 – High-speed camera        Figure 2 – Clamped beam with a jig 

Experiments 

The properties of the beams are shown in Table 1. The beam was located on the vertical 
direction and was excited along the horizontal direction. It was excited by the function 
generator near to the first natural frequency and second natural frequency. 

Table 1. Properties of beam 

l (Length) b (Width) h (Thickness) ρ (Density) E (Young’s modulus) 

500 mm 5.0 mm 0.5 mm 7753.4 kg/m3 167 GPa 
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Experimental results 
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(a) First mode                        (b) Second mode 

Figure 3 – Horizontal position data 

In the first mode, as time goes on, the displacement of end point was increased. The 
amplitude of excitation data is about 6 mm and the frequency is 1.7 Hz. And experiment 
of the second mode was the same method as that of the first mode. The amplitude of 
excitation data is about 6 mm and the frequency is 9.3 Hz. The horizontal displacement 
at end node was shown in Figure 3. 

DAMPING MODELS  

Linear damping  

We used a linear model of damping forces: 

eDQ &=damp  (1) 

In this model, a proportional Rayleigh damping [2] is employed and the system 
damping matrix has the following form. 

CMD βα +=  (2) 
with mass matrix M  and tangent stiffness matrix C  (Jacobian matrix of forces) 
multiplied by coefficients that depend on frequencies 1ω  and 2ω  as well as on 
damping ratios 1ζ  and 2ζ  for the first two modes of the system. The ratios 1ζ  and 

2ζ  should be identified from experimental data. 
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Table 2 represents the damping parameters for computer simulations. 
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Table 2. Proportional Rayleigh’s damping parameters 

1ω  (rad/s) 2ω  (rad/s) 21 ζζ =  α  β  

10.738 59.056 0.012 0.213 3.35e-4 

Quadratic damping  

Assume that the damping force has a linear and a quadratic part in velocities [4] 

vvvvf 21)( αα +=  (4) 

with unknown coefficients 1α  and 2α  that should be identified from experimental 
data. Equations of motion can be written as: 

021 =+++ eeMeMeCeM &&&&& ββ  (5) 

Following Van der Pol’s method, we represent the solution in the form 
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In order to identify the coefficients 1β  and 2β  we should measure the 
amplitudes kA  as well as time points kt  from an experimental curve as shown in 
Figure 4. 

 
Figure 4 - Damped oscillations 

Then we use the method of least squares 
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and find the values 1β  and 2β . 
Following this algorithm, parameters of the model of damping forces were 

obtained as shown in Table 3. 
Table 3. Quadratic damping parameters 

0ω  (rad/s) 0A  (mm) 1β  (s-1) 2β  (m-1) 

10.738 182.267 0.108 0.158 
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NUMERICAL SIMULATIONS  

The excitation input data of the beam was obtained from the experimental 
measurements. We imposed on the motion with the excitation input data at the node 
which is fixed by the jig.  

Comparison for the first mode  
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(a) Rayleigh damping                   (b) Quadratic damping 

Figure 5 – Result of the first mode 

The end displacements of the first mode with Rayleigh’s damping and quadratic 
damping were shown in Figure 5, respectively. Both linear damping results and 
quadratic damping results showed good agreements with the experimental results. 

Comparison for the second mode 
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(a) Rayleigh’s damping                 (b) Quadratic damping 

Figure 6 – Result of the second mode 

In Figure 6, the displacements with Rayleigh’s damping were oscillated and showed 
some differences compared to the experiments. This is due to the weak damping forces. 
On the other hand, the oscillations of the displacements with quadratic damping were 
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decreased and the errors to the experiments were decreased. The numerical results with 
quadratic damping showed better result than that of Rayleigh’s damping. 

CONCLUSIONS 

In this paper, we performed both physical experiments and computer simulations, which 
took into account for the resistance force as a proportional linear damping and quadratic 
damping. The experiment with a high speed camera well captures the large 
displacement of the beam. The excitation input data of the beam in the computer 
simulation was obtained from the experimental results. We imposed on the motion with 
the excitation input data at the node which is fixed by a jig. 

The numerical results were compared to the experiments. For the first mode, the 
numerical results using Rayleigh’s damping and quadratic damping were in accordance 
with the experimental results. On the other hand, for the second mode, the numerical 
results with quadratic damping showed better result than that of Rayleigh’s damping. 

Damping forces play an important role in the computer simulations of large 
deformation problems. According to this study, quadratic damping gives better results to 
the problems with the 1st and the 2nd mode simultaneously.  

ACKNOWLEDGMENTS 

This work was supported by the Korea Science and Engineering Foundation (KOSEF) 
through the National Research Lab. Program funded by the Ministry of Science and 
Technology (No. M10400000329-06J000032910) 

REFERENCES 

[1] Berzeri M., Shabana A. A., “Development of simple models for the elastic forces in the absolute nodal 

coordinate formulation”, J. Sound Vib., 235(4), 539-565 (2000). 

[2] Craig, R. R., Structural Dynamics, John Wiley & Sons, (1981). 

[3] Shabana A. A., “Definition of the slopes and the finite element absolute nodal coordinate formulation”, 

Multibody System Dynamics, 1, 339-348 (1997). 

[4] Yoo W.S., Lee J.H., Park S.J., Sohn J.H., Poforelov D., Dmitrochenko O., “Large Deflection Analysis 

of a Thin Plate: Computer Simulations and Experiments”, Multibody System Dynamics, 11, 185-208 

(2004). 

583




