반도체 소재의 나노미터 스케일의 변형거동 해석

김동언*•오수익 †

Deformation pathway of semiconductor materials in nanometer scale

Dong-Earn Kim and Soo-Ik Oh

Key Words: Molecular Dynamics(분자동역학), Silicon(실리콘), Gallium-Arsenide(갈륨비소), Contact-loading(접촉 하중)

Abstract

Since all essential property of semiconductor materials are structure-sensitive, the understanding of the deformation mechanism and the deformed structure which can be formed in the nanometer-scale devices is very crucial. To investigate the deformation mechanism and the corresponding structures, nanometer-scale contact loading simulations are carried out using molecular dynamics in silicon and gallium-arsenide.

1. 서 론

트렌지스터의 발명 이후 반도체를 이용한 제품 은 우리 생활에선 빠질 수 없는 중요한 장비가 되었다. 지난 수십년의 개발을 통해서 반도체 장 비의 용량은 증가하고 그와 반하여 크기는 감소 하여 현재 수십 나노미터가 된다. 나노미터 스케 일에서 물성 및 변형 메커니즘은 마크로 스케일 과는 크게 다르다고 알려져 있다. 따라서 나노미 터 스케일의 공정 및 제품 개발을 위해서는 이에 대한 명확한 이해가 선행 되어야 한다.

단결정 실리콘은 NEMS 및 반도체에 가장 많 이 사용되는 재료이다. 이와 더불어 갈륨비소는 대표적인 화합물 반도체이다. 실리콘에 비해서 직접적 띠간격 (direct bandgap)을 가지고 있으며 전자이송속도 또한 빨라서 이전부터 고속회로에 서 많이 사용되어 왔다. 이와 더불어 현재 개발 되고 있는 수 나노 크기의 반도체에서는 실리콘 기반의 외인성 반도체(extrinsic semiconductor)에서 발생되는 doping level control의 문제점을 해결하 기 위해서 갈륨비소 기반의 고유반도체(intrinsic semiconductor)를 이용하기 위한 연구들이 진행 되고 있다.

반도체 재료의 중요한 모든 물성은 structure sensitive하다. 나노소재의 나노미터 스케일 패턴 은 생산 공정과 작동 중에 하중과 열팽창, 마찰 과 같은 변형을 겪게 되고 이로 인한 변형이 발 생하게 된다. 그러므로 이러한 반도체 소재의 나 노미터 크기의 변형에서의 변형 거동 및 변형된 구조에 대한 이해는 기계적, 전지적으로 매우 중 요하다. 반도체 소재의 변형거동은 다른 재료들 과 마찬가지로 슬립(slip), 쌍정형성(twinning), 구 조상전이(structural phase transformation)와 같은 주 요 변현거동을 갖는다. 이러한 변형 거동연구는

 ^{*} 책임저자, 회원, 서울대학교 기계항공공학부
E-mail : sioh@snu.ac.kr
TEL : (02)880-7151
FAX : (02)872-0236
* 서울대학교 기계항공공학부 BK21

DAC(diamond anvil cell)과 나노인덴테이션을 이 용하여 많은 연구가 이루어져 왔다. 하지만 이려 한 연구에서 이용된 X-ray 회절법, Raman 분광법, Transmission electron microscopy (TEM) 방법들은 *ex-situ* 한 방법으로 변형거동을 직접적으로 확인 할 수 없다는 문제점을 가지고 있다.

본 논문에서는 실리콘과 갈륨비소의 나노미터 스케일의 변형거동을 해석하였다. 나노미터 스케 일의 변형은 분자동역학을 이용하여 나노인덴테 이션을 모델링하여 구현하였다. 실리콘과 갈륨비 소가 유사한 구조임에도 불구하고 변형 거동은 매우 다름을 확인하였다.

2. 실리콘의 변형거동 해석

2.1 해석 방법

전체 해석시스템은 단결정 구조의 실리콘 기판 과 다이아몬드 인덴터로 이루어져 있다. 실리콘 과 다이아몬드의 각각의 원자에 대한 공유결합을 모사하기 위해서 Tersoff 포텐셜[3]이 사용되었다. 기판의 실리콘과 인덴터의 다이아몬드 원자간에 작용하는 힘은 척력만을 모델링 하였다. 기판이

Fig. 1 Side cross-section view of transformed region induced by nanoindentation on the (100) silicon surface. (a) Cross section view on (100) plane, passing through the center of the simulation model (S1* of Figure 2); (b) Cross section view on (-110) plane (S2* of Figure 2)

부동태화 (passivated) 되어 있다고 가정하고 표면 의 물리흡착과 화학흡착은 고려하지 않았다. 실 리콘은 약 2,00,000의 실리콘 원자로 이루어져 있 다. 대규모 연산을 위해 격자형 셀을 이용한 neighbor list와 OpenMP를 이용한 병렬연산을 이 용하였다.

2.2 해석 결과 및 고찰

일반적으로 나노압입시 Si-I에서 Si-II로의 상전 이는 인덴터 아래에서 일어난다고 알려져 있다. 그러나 이번 논문에서는 접촉면의 결정방향에 따 라 다른 결과를 보였다. (100)의 경우는 인덴터 아래부분에서 배위수6의 결정구조가 관찰되는 반 면 (110)와 (111)에서는 배위수 4, 5, 6의 혼합물 형태의 비정질 구조가 관찰되었다. 또한 (100)와

Fig. 2 Cross section view of transformed regions at different depths from the Si(100) surface. (a)At the depth of $13\sim14$ nm from the top surface (T1* of Figure 1); (b) $11\sim12$ nm; (c) $9\sim10$ nm; (d) $7\sim8$ nm; (e) $5\sim6$ nm; (f) $3\sim4$ nm.

(111)의 상전이 영역를 비교할 경우 (100)이 깊이 방향으로20Å 더 깊이 상전이가 일어난 것을 확 인 할 수 있다. 실리콘의 구조상전이는 첩촉면에 따라서 메커니즘이 전혀 다른고 실리콘의 슬립계 와 밀접한 연관이 있다는 것을 확인할 수 있었 다. 일반적으로 준 안정성 결정구조인 Si-III와 Si-XII는 압입하중을 제거하는 구간에서 관찰된다 고 알려져 있지만 이번 연구에서는 실리콘의 슬 립방향과 동일한 <110>으로 압입과정 중에 관찰 되었다. 실리콘결정은 450℃ 이하에서는 전위가 발생하지 않는다고 실험을 통해 알려져 있다. 강 한 방향성을 갖는 사면체 구조의 공유결합으로 인해 특정 온도 이하에서는 전위 보다는 사면체 결합의 뒤틀림이 발생하고 이로 인해 준안정성 결정으로의 상전이가 슬립방향을 따라서 관찰된 다고 판단된다.

3. 갈륨비소의 변형거동 해석

해석 시스템은 실리콘과 같으며 갈륨비소 원자 의 공유결합은 Albe가 제시한 모델을 적용하였 다. 갈륨비소의 경우는 실리콘과 달리 나노인덴 테이션 하에서 일반적인 변형거동이 알려져 있지 않다. 본 논문에서는 쌍정형성을 동반한 구조상 전이가 관찰 되었다. 이번 연구에서 발견된 구조 상전이는 이전의 DAC를 이용한 연구에서 확인되 는 구조와는 다른 것으로 판단된다.

Fig. 3 Structural phase transformation accompanied with twinning deformation in GaAs

4. 결 론

분자동역학 해석을 이용하여 주요 반도체 물질 인 실리콘과 갈륨비소에 대한 변형거동에 대해서 연구하였다. 두 물질이 구조적으로 유사함에도 불구하고 변형거동은 매우 다른 것을 확인 할 수 있었다. 실리콘의 경우, 정수압 상태에서 발견되 는 것과 같은 구조상전이와 같은 배위수 6을 같 은 전도성의 high-pressure phase가 발견되었다. 반 면 갈륨비소의 경우 배위수 4의 구조가 유지되었 으며 변형된 구조는 이전의 연구에서 발견되지 않던 상전이에 의해 생성되는 것을 확인하였다.

후 기

본 연구는 과학기술부가 주관하는 21세기 프론 티어연구개발사업의 일환인 나노메카트로닉스기 술개발사업단의 연구비 지원(06K1401-01020)에 의해 수행되었습니다.

참고문헌

- (1) Allen, M. P. and Tildesley, D. J., 1987, "Computer simulation of liquids," Oxford University Press, New York
- (2) Andrew, R. L., 2001, "Molecular modelling: Principles and applications,", Prentice-Hall
- (3) Frenkel, D. and Smit, B., 1996, " Understanding molecular simulation: from algorithms to application," Academic press
- (4) Verlet, L., 1967, "Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," *Phys. Rev.*, Vol. 159, No. 98, pp.103
- (5) Fincham, D. and Ralstom, B. J., 1981, "Molecular dynamics simulation using the Cray-I vector processing computer," *Comput. Phys. Commun.*, Vol. 23, No. 127, pp. 34
- (6) Thompson, S. M., 1983, "Use of neighbor lists in molecular dynamics," *CCP5 Quarterly*, Vol. 8, No. 20, pp. 8