Hermeticity and Reliability Issues in Microsystems Packaging

함 석 진 전문연구원 (삼성종합기술원)

& Leading the Next

Hermeticity and Reliability Issues in Microsystems Packaging

Suk-Jin Ham*, Woon-Bae Kim and Chang-Youl Moon

In collaboration with Professor B. Han of CALCE (UM)

Packaging Project Team
Micro Devices and Systems Lab.
Samsung Advanced Institute of Technology
E-mail*: sj.ham@samsung.com

Hermeticity Requirement

- ☐ Hermeticity is the ability of a seal to maintain an acceptable level of stable and sometimes inert ambience for the packaged device.
 - Units of measurement: atm-cc/s

Why is hermeticity required in MEMS?

Maintain a high-vacuum environment in order to obtain a high Q-factor

e.g. MEMS accelerometers and gyroscopes

Prevent ingress of moisture and contaminants

 e.g. Thin-Film Bulk Acoustic Wave Resonators (FBARs)

Oxidation of the metal electrode of the FBAR filter can result in a frequency shift

Leading the Next

SAMSUNG ADVANCED
INSTITUTE OF TECHNOLOGY

Classification of MEMS devices

- ☐ Class I: No moving parts
 - Accelerometers, Pressure Sensors, Ink Jet Print Heads, Strain gage

2

- Particle contamination, Shocked-induced stiction
- ☐ Calss II : Moving parts (No rubbing or impacting surfaces)
 - Gyros, Comb Drives, Resonators, Filters
 - Particle contamination, Shocked-induced stiction, Mechanical fatigue
- ☐ Class III: Moving parts (Impacting surfaces)
 - TI DMD, Relays, Valves, Pumps
 - Particle contamination, Shocked-induced stiction, Stiction, Mechanical fatigue, Impact damage
- ☐ Class IV : Moving parts (Impacting and rubbing surfaces)
 - Optical switches, Shutters
 - Particle contamination, Shocked-induced stiction, Stiction,
 Mechanical fatigue, Mehcnical fatigue, Friction, Wear

Leading the Next

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

MEMS Reliability Issues					
☐ Mechanical Wear					
- Sliding contact					
 Solid against solid (som 	 Solid against solid (some actuators), Liquid against solid (nozzles) 				
☐ Fracture					
– High strain		!			
 Flex joints (some actual 	itors), Springs(reso	nators)			
☐ Fatigue					
 Repetitive strain 					
 Flex joints, Springs 					
Optical Degradation					
 Due to high intensity light 	ght or environment	tal effects			
 Mirror surfaces 					
♥ Leading the Next	4	SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY			

MEMS Reliability Problem Sources □ Charging - In dielectrics in MEMS - Comb drives □ Shocks - High g applications, Dropping devices, Shipping (especially released) □ Vibration - Mobile applications, Aerospace vehicles, Land vehicles (esp. military) □ Stiction - High humidity, During initial release, During high-humidity storage - Capillary, Electrostatic, van der Waals force ☐ Thermal Degradation - High temperature applications - Degradation of hydrophobic coatings, Change in stress SAMSUNG ADVANCED 41.1111 👸 Leading the Next 5

MEMS Reliability Issues					
☐ Thermal Cycling					
- Non-temperature contr	- Non-temperature controlled applications				
 Difference in thermal expension coefficient 					
☐ Humidity					
– Possible stiction, wear					
☐ Stress Corrosion Cracking					
 High stress with high humidity 					
☐ Creep					
- Repetitive high strain usage					
 Resonators, High flex optical redirectors 					
☐ Environmental Degradation					
 Corrosive or other adverse environments, Devices that interact directly 					
- Pressure/chemical sensors etc.					
😵 Leading the Next	6	SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY			

True leak rate and Apparent leak rate

- ☐ Apparent leakage rate, R
 - The leak rate measured by the spectrometer.
 - Dependent on test conditions
 - Depends on the pressure differential and is hence time variant.
- ☐ True leakage rate, L
 - Defined as the amount of gas that would leak out per second for a pressure differential of 1 atm between the outside and the inside of the package.
 - Independent of test conditions
 - For a given gas
 it is a characteristic of the package and is hence time invariant.
 - Straightforward correlation between true leak rates of different gases.

True leakage rate facilitates meaningful comparisons.

15

🟂 🛮 Leading the Next

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

Governing Equation for the He Fine Leak Test

Molecular conduction based equation

$$P_{specimen} = P_b (1 - e^{-L t_b/V P_o})$$
 Bombing

$$P_{specimen} = P_b (1 - e^{-Lt_b/VP_*}) e^{-Lt_{dwell}/VP_*} \begin{bmatrix} \text{After leakage during dwell} \end{bmatrix}$$

$$P_{specimen} = P_b (1 - e^{-Lt_b/VP_\bullet}) e^{-Lt_{dwell}/VP_\bullet} e^{-Lt_s/VP_\bullet} *$$

$$R = \frac{LP_{specimen}}{P_o}$$

$$\Rightarrow R = \frac{LP_b}{P_o} (1 - e^{-Lt_b/VP_o}) e^{-Lt_{dwell}/VP_o} e^{-Lt_a/VP_o}$$

 P_b : Bombing pressure, t_b = Bombing time, t_{dwell} = Dwell time

V = Package volume

L = True helium leak rate

 t_s = time elapsed after switching on the spectrometer

* The second exponential term accounts for leakage once the spectrometer starts.

🚱 Leading the Next

16

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

t (s)

 $P_b = 5 \text{ atm}$

 $t_b = 6$ hours $t_{dwell} = 10 \text{ minutes}$ $V = 5 \times 10^{-5} \text{ cc}$

only on L.

Initial apparent leak rate R,

For a given package and fixed test parameters, signal profile depends

10

L = 5 x 10⁻⁷ atm-cc/s

MIL-STD-883 Method 1014*

- ☐ Establishes the guidelines for the helium fine leak test
 - Fixed method
 - Flexible method

Fixed method

Volume of package (V) in cm ³	Bomb condition			R, Reject limit (atm cc/s He)
	P_b Psia ± 2	Min. Exposure time hours (t_b)	Maximum dwell hours (t _{dwell})	
<0.05	75	2	1	5 x 10 ⁻⁸
>0.05 - <0.5	75	4	1	5 x 10 ⁻⁸
>0.5 - <1.0	45	2	1	1 x 10 ⁻⁷
>1.0 - <10.0	45	5	1	5 x 10 ⁻⁸
>10.0 - <20.0	45	10	1	5 x 10 ⁻⁸

- Prescribed volume-dependant test conditions for the fixed method
- The package is rejected if the apparent leak rate is higher than R_i

17

& Leading the Next

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

MIL-STD-883 Method 1014 (contd.)

Flexible method

- \square Reject limit is established in terms of the true air leak rate (L_a) .
 - Less than 5×10^{-8} atm cc/s air (V < 0.01cc)
 - Less than 1×10^{-7} atm cc/s air (0.01cc < V < 0.4cc)
 - Less than 1×10^{-6} atm cc/s air (V > 0.4cc)
- \square Reject limit in terms of the apparent leak rate (R_i) is calculated using this value.

$$R_{l} = \frac{L_{a}P_{b}}{P_{0}} \left(\frac{M_{a}}{M_{helium}}\right)^{\frac{1}{2}} \left\{ 1 - e^{\frac{-L_{a}t_{b}}{VP_{0}} \left(\frac{M_{a}}{M_{helium}}\right)^{\frac{1}{2}}} \right\} e^{\frac{-L_{a}t_{b,ell}}{VP_{0}} \left(\frac{M_{a}}{M_{helium}}\right)^{\frac{1}{2}}}$$

- ullet M_a and M_{helium} are the molecular weights of air and helium, respectively.
- P_o is a constant and is equal to 1 atm.
- ullet P_b , t_b and t_{dwell} are the bombing pressure, bombing time and the dwell time, respectively.
- V is the package volume.
- Guideline: Any values can be chosen for the test parameters as long as they produce a signal in the spectrometer.
- Recent change to MIL TM 1014 dated June 2004 requires the "Flexible" method unless otherwise specified.

19

🧩 Leading the Next

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

Batch Test Using Multiple Packages

- ☐ Measurement of a leakage rate lower than the lower measurable limit seems possible by a batch test using multiple packages:
 - Several small packages are bombed simultaneously and then the entire batch is transferred into the spectrometer for testing.
 - Total leakage, i.e., the spectrometer signal is the sum of leakage from each of the packages in the batch and can be detected by the spectrometer.

Assumption: Gaussian distribution of
$$L$$

This yields an improved fit but not a very good one.

$$R = \sum_{i=1}^{54} \frac{L_i P_b}{P_0} (1 - e^{-L_i l_b / V P_c}) e^{-L_i l_b n_i V P_c} e^{-L_i l_b V P_c}$$
where, L_i ($1 \le i \le 54$) are normally distributed

Test Parameters
$$P_b = 5 \text{ atm}$$

$$t_b = 6 \text{ hours}$$

$$t_b = 6 \text{ hours}$$

$$t_b = 10 \text{ minutes}.$$

$$V = 2.156 \times 10^{-4} \text{ cc}$$

$$L_p = 4.9 \times 10^{-6} \text{ atm-cc/s}$$

$$L_q = 2.6 \times 10^{-6} \text{ atm-cc/s}$$
We calling the Next

26

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

	감사합니다		
S Leading the Next	30	SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY	AND THE PARTY OF T