SUV 용 토크 컨버터의 언발란스량과 소음과의 상관관계 분석

Correlation Analysis between Unbalance and Noise of Torque Converter for SUV *이인태, 송재훈, *장재덕, 주인식

*I. T. Lee, J. H. Song, *J. D. Jang(jjd@kapec.com), I. S. Joo 한국파워트레인㈜

Key words: Unbalance, Noise, Torque Converter, SUV

1. 서론

소비자는 차량에 대한 정숙성 및 안락감에 대한 요구를 증대하고 있으며, 자동차 업계에서는 차량의 성능 및 내구성뿐만 아니라 진동, 소음과 같은 감성품질까지도 차량의설계 단계에서부터 고려해야 할 중요한 인자가 되었다.(1) 그러나 소음 및 진동은 발생원인과 전달과정이 매우 복합적이며, 그 원인 규명 및 개선이 어려운 실정이다. 또한연비 향상을 위한 차량의 경량화 및 동력 성능을 높이기위한 엔진 출력 향상 등은 차량의 NVH(Noise, Vibration, Harshness)을 더욱 불리하게 만든다.(2)

더욱 경쟁이 심화된 세계 자동차 업계에서는 소비자에 게 편안한 운전을 제공하기 위해 차량 NVH 에 관한 연구 에 대한 비중이 증가되어 지며, NVH 전달체계의 분석을 통해 진동 및 소음이 차량 실내로 유입되는 것을 막기 위 하여 많은 노력을 기울이고 있다.⁽³⁾ 엔진의 NVH 에 대한 많은 연구 성과로 인해 일정 수준 이상의 정숙성을 유지하 는 엔진의 개발이 가능해지면서 상대적으로 동력전달장치 에 의한 소음 발생 비중이 커지고 있는 실정이다.(4) 엔진을 제외한 동력 전달 장치내의 각 기능 부품 중에서 토크 컨 버터는 내부 유체의 의한 마찰 및 유동과 회전 언발란스 (Unbalance)로 인해 소음 및 진동을 발생시킬 수 있는 부품 이다. 차량은 NVH 를 감소시키기 위해 동력전달계통의 회 전부품들에 대해 회전 발란성을 실시하며 토크 컨버터도 발란스 웨이트 용접으로 발란싱을 실시한다. 회전체의 질 량중심이 회전 중심으로부터 편심되어 있거나, 불균형 질 량이 존재한다면 회전체는 불균형 상태에 있게 된다. 이러 한 회전체의 회전속도가 증가할수록 질량 편심에 의해 더 큰 불균형 원심력이 발생하여 회전체 진동 및 소음의 원인 이 된다.

이에 대해 본 연구는 토크 컨버터의 언발란스량에 따른 소음특성을 분석하고, SUV(Sports Utility Vehicle)의 소음 감소를 위한 자료로 활용하고자 한다.

2. 시험평가 기준 및 시험장치

토크컨버터의 임펠러는 엔진 회전수와 동일한 회전수를 가지게 되고 상대적으로 터빈은 속도비 만큼의 회전수를 가지고 회전을 하게 된다. 회전체에 대한 소음특성을 분석하기 위해서는 소음 측정값을 각 차수(Order)별로 분석하고 차수에 해당하는 회전인자를 가진 부품을 찾는 것이 일반적으로 효과적이다.⁽⁵⁾

토크 컨버터의 소음은 성능시험용 다이나모메타 (Dynamometer)에 마이크로폰(Microphone)과 B&K 社의 Pulse® 장비를 부착하여 측정하였다. Fig. 1 은 시험장치 개략도로 토크 컨버터를 회전시키기 위해 신코(Shinko)社에서 제작된 다이나모메타를 사용하였다. 다이나모메타는 토크 컨버터의 성능 및 내구성을 평가하는 시험기로 엔진측 역할을 하는 입력 모터와 변속기 역할을 하는 출력 모터로 구성되어 있으며, AC 모터 사용으로 빠른 응답 및 제어가가능하다. 소음측정 시스템의 사양과 구성은 Table. 1 과 같다. 이것은 소음 측정을 통한 주파수 영역에서의 FFT(Fast Fourier Transform) 분석과 오더트랙킹(Order Tracking)을 위한 시스템 구성이다. 소음 측정은 Fig. 1 과 같이 다이나모메타

에 대상 토크 컨버터를 장착 후, 회전하는 상태에서 소음을 측정한다. 측정용 마이크로폰은 토크 컨버터의 수직방향으로 30 cm 위에 설치하였다.

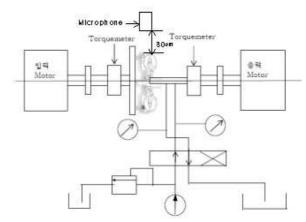


Fig. 1 Schematic drawing of measurement system

Table 1 The configuration for radiation sound analysis

Software	Pulse Software 4.2				
Hardware	Multi Data Acquisition Unit	Type 2816			
	4Ch Microphone Module	Type 3028			
	4Ch Input Module	Type 3022			
	Signal Analyzer Interface Module	Type 7521			
	Microphone Amp.	Type 2669			
	Microphone	Type 4115			

오더트랙킹은 연속적인 회전수 변화에 따른 소음 성분 의 측정을 필요로 하며, 그 조건은 Table 2 와 같이 결정하 였다. 터빈은 스톨(Stall)조건으로 고정하고, 임펠러는 500 ~ 2500rpm 까지 선형적으로 45 초 동안 증가시키며 측정하였 다. 회전수의 영역은 2500rpm 으로 제한하였으며, 2500rpm 이상의 조건에서는 자동변속기 오일(Automatic Transmission Fluid, ATF)의 열화로 측정이 곤란하다. 토크 컨버터의 작동 구간 중 유동저항이 가장 큰 구간은 스톨이며, 이 구간은 입력 회전수에 대해 출력 회전수가 항상 "0"으로 고정되는 경우이다. 토크 컨버터는 스톨 조건에서 난류 및 유동박리 등이 발생하게 된다. 내부의 유동 저항이 가장 큰 스톨시 에 소음이 가장 크게 된다. 그래서 유동과 언발란스에 의 해 소음은 스톨시에서 측정하도록 선정하였다.(6) 그리고 소 음측정에 사용된 토크 컨버터의 언발란스량은 Table 3 과 같다. 언발란스 측정은 드라이브 플레이트와 토크 컨버터 의 F/Cover 를 체결하여 0.8ℓ의 자동변속기 오일을 삽입 후, 인풋샤프트(Input Shaft)로 터빈과 스테이터를 고정한 상 태에서 토크 컨버터의 임펠라와 F/Cover 를 일정한 속도로 회전시켜 언발란스량 및 각도를 측정하였다.

Table 2 Noise measurement condition

Speed Ratio		0.0 (Stall)		
Input Revolution		500 ~ 2500 rpm		
Oil Pressure	Inlet	5 kgf/cm²		
Oli Flessule	Outlet	2 kgf/cm²		
Inlet ATF Temperature		80 ℃		

Table 3 Unbalance of torque converter sample

Sample No	#1	#2	#3	#4	#5
Unbalance(g·cm)	16.0	43.1	85.4	186.3	303.1

본 시험에 사용된 공시품은 2500cc 급 디젤 엔진에 적용되는 후륜 구동 SUV에 장착된다.

3. 시험결과 및 고찰

시험조건 및 방법을 적용하여 토크 컨버터의 소음측정을 수행하였다. 회전체에 대한 소음은 일반적으로 오더트랙킹을 통해 분석하며, Fig. 2 는 샘플 #1 언발란스량 16g·cm에 대한 오더트랙킹을 이용한 분석 결과이다. Fig. 2 에서와 같이 회전체의 작동 중 발생하는 소음이 여러 부품의회전 인자들로 인해 다양한 차수의 성분을 포함하고 있음을 나타내고 있다.

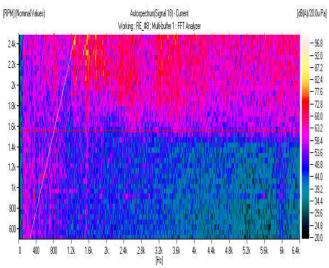


Fig. 2 Order tracking result for sample #1

Fig. 3 은 소음측정 결과를 나타낸 것이다. 다이나모메 타의 암소음이 약 79dBA로 Fig. 3 에서와 같이 1500rpm 이 하의 영역에서 측정된 84dBA 이하의 소음 OA(Overall)값은 장비 소음에 의한 영향을 받는 영역으로 소음 OA 값의 신 뢰성이 낮다. 1500rpm 이상영역에서 입력 회전수가 증가하

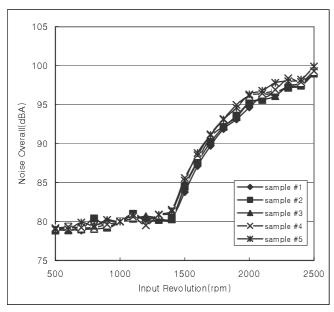


Fig. 3 Noise result graph for torque converter sample

면서 소음 OA 값도 증가되어지며, 언발란스랑이 증가할수록 소음 OA 값도 소폭 증가됨을 알 수 있었다. Fig. 4 에서와 같이 SUV 용 디젤 엔진의 주 사용 영역인 2000rpm 을비교하면 샘플 #1 대비 샘플 #5 의 소음 OA 값이 1.7dBA 높은 것을 알 수 있다.

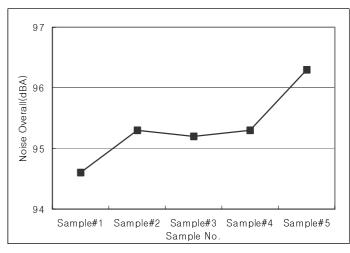


Fig. 4 Noise result graph for torque converter sample at 2000rpm

4. 결론

SUV 용 토크 컨버터의 언발란스량별 소음값을 분석한 결과 다음과 같은 결론을 얻었다.

- 1) 토크 컨버터가 회전하는 동안 오더트랙킹을 분석한 결과 발생하는 소음이 여러 부품의 회전 인자들로 인해 다양한 차수의 성분을 포함하고 있음을 알 수 있었다.
- 2) 측정 장비의 영향이 없는 입력 회전수 1500rpm 이상 영역에서 입력 회전수가 증가할수록 토크 컨버터의 유동에 의한 소음 OA 값이 증가함을 알 수 있었다.
- 3) 입력 회전수 1500rpm 이상 영역에서 토크 컨버터의 언발란스량이 증가함에 따라 소음 OA 값도 소폭 증 가함을 알 수 있었다.
- 4) SUV 용 토크 컨버터의 언발란스량 증가에 따라 소음 도 함께 증가됨으로 차량의 정숙성을 위해 토크 컨 버터의 발란스 규제치가 필요함을 확인하였다.

후 기

본 연구는 서울대학교 정밀기계설계공동연구소와 산업 자원부 중기거점기술개발 사업(10016432)의 지원으로 수행 되었으며 이에 감사 드립니다.

참고문헌

- Olivier Hayat, Michel Lebrun, Emmanuel Domingures, "Powertrain Drivability Evaluation: Analysis and Simplification of Dynamic Model", SAE, 2003-01-1328
- 2. 김기세, "모듈형 진동 해석시스템을 이용한 차량 구동계 비틀림진동에 관한 연구", 전남대학교, 박사학위 논문, pp. 3~4, 1988.
- 3. 전준식, "구조음향 상반원리를 이용한 자동차 차체 소음 민감도 측정 및 실내 소음 개선", 국민대학교 석사학위 논문, 2003.
- 4. 전형주, "자동차의 동력전달 장치에 대한 진동 및 소음 연구", 순천대학교 논문집, Vol. 14, pp. 189~196, 1995.
- 5. 양보석, "회전기계의 진동", pp. 559~597, 인터비젼, 2002.