
고객의고객의고객의고객의    서비스서비스서비스서비스    수준을수준을수준을수준을    고려한고려한고려한고려한        

차량경로문제의차량경로문제의차량경로문제의차량경로문제의    발견적발견적발견적발견적    해법해법해법해법    
 

최강화최강화최강화최강화    

한성대학교 경영학부 

 

 A Heuristic Algorithm for Vehicle Routing Problem  

with Customer’s Service Level 

 

Choi Kang Hwa 

Division of Management, Hansung University 

E-mail : khchoi@hansung.ac.kr 

 

요요요요  약약약약 

 

본 연구는 지리학적으로 산재해 있는 다양한 수요지점을 서비스할 수 있는 차량경로모델을 

개발한다. 즉 다양한 수요지점을 구역으로 분할하여 각 수요지점의 수요량과 서비스 레벨을 

고려하여 최적차량 운송계획 모형을 개발하는 데 있다. 본 연구 방법에서 사용된 접근 방법으

로 먼저 단일 출발점에서 각 수요지점의 수요조건을 만족하는 범위 내에서 최소의 운반 거리 

및 수요 조건을 만족하도록 각 서비스 지역을 할당하는 Clustering Algorithm을 개발하여 단일 

구역별 최적의 이동 경로를 개발하였다. 그리고 각 수요지점별 수요량의 평균과 표준편차를 

고려하여 새로운 Saving Algorithm을 기반으로 하여 운송 가능한 차량별 수요지점을 할당하였다.  

또한 각 차량경로 구역별 서비스 레벨을 고려한 개선된 알고리즘을 사용하여 차량경로 문제

의 근본적인 목적인 이동 거리(비용, 시간)의 최소화와 고객서비스 극대화를 동시에 달성하기 

위한 최적 차량 운송 계획 모델을 개발하였다. 마지막으로 수치적 예제를 통해 본 연구에서 

사용된 모델들과 기존 모델들과의 비교를 수행하였다. 

 

1. Introduction 

 

The vehicle routing problem (VRP) is the problem of 

designing optimal deliver or collection routes from one 

or several depots to a number of geographically scattered 

customers. The VRP and all its variations play a central 

role in the fields of physical distribution and logistics. In 

the Vehicle Routing Problem, a set of customers require 

some kind of service, which is offered by a fleet of 

vehicles. The goal is to find routes for the vehicles, each 

starting from a given depot to which they must return, 

such that every customer is visited exactly once. Usually 
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there is also an objective that needs to be optimized, e.g. 

minimizing the travel cost or the number of vehicles 

needed (Gendreau, Laporte & Seguin 1996). 

The most important characteristics of the vehicle routing 

problem under stochastic demand is that it is no longer 

possible to assume that routes can be followed as 

planned. Due to the uncertainty of demands, a route 

failure may occur at some point along the route where 

the vehicle load has been exhausted before all customer 

demands are met. In that case, some resources or 

corrective action has to be taken. There are various 

recourse strategies that can be used depending on the 

company’s routing policy and the amount of available 

information on customer demands.  

 

2. The Stochastic Vehicle Routing Problem 

 

The first needs for solving practical transportation 

problems were satisfied with deterministic parameters 

like cost, customer demands or vehicle travel times. The 

dispatcher has to choose between different strategies of 

restocking. In the case when the new unexpected demand 

is greater then the capacity left on the vehicle the route 

should be broken and the vehicle directly returned to the 

depot. Because of these stochastic parameters new class 

of VRP problem was defined the stochastic vehicle 

routing Problem (SVRP) denotes that at least one of 

vehicle routing problem parameters is stochastic. If the 

set of customers visited in time is stochastic we have 

VRP with stochastic customers (VRPSC). VRP with 

stochastic travel times (VRPSTT) means that travel time 

is not deterministic. VRP with stochastic demands 

(VRPSD) means that each or some of customers have 

stochastic demands. 

The VRPSD is defined on a complete graph G = (V, A, 

D), where V = { v0, v1, …, vn } is a set of nodes 

(customers) with node v0 denoting the depot, A = { (vi, 

vj) : i,j ∈{0, … , n}, vi, vj ∈V, vi ≠ vj } is the set of 

arcs joining the nodes, and D = {dij : vi, vj ∈V, vi ≠ vj} 

are the travel costs (distances) between nodes. One 

vehicle with capacity Q has to deliver goods to the 

customers according to their demands. The objective is 

to minimize the total expected distance traveled with 

satisfying the following assumptions.  

Customers’ demands are stochastic variables ξi, i = 1, ..., 

n independently distributed with known distributions. 

The actual demand of each customer is only known 

when the vehicle arrives at the customer location. It is 

also assumed that ξi does not exceed the vehicle’s 

capacity Q, and follows a discrete probability 

distribution pik=Prob(ξi = k),  k = 0, 1, 2, ... , K ≤ Q. A 

feasible solution to the VRPSD is a permutation of the 

customers V = { v0, v1, …, vn } starting at the depot (that 

is v0), and it is called a priori tour. The vehicle visits the 

customers in the order given by the a priori tour, and has 

to choose, according to the actual customer’s demand, 

whether to proceed to the next customer or to go to depot 

for restocking.  

A stochastic vehicle routing problem arises when some 

of the elements of the problem are stochastic. This could 

be relevant for many of the components that may be 

included in a standard VRP, for instance travel times, 

demands. Stochastic vehicle routing problems are 

usually formulated as two-stage stochastic programming 

problems. Then probabilistic information is used to 

construct an a priori plan, and recourse actions are 

defined to handle the situations that occur when the 

random variables are realized (Hvattum, Lokketangen & 

Laporte, 2003). In this problem customer demands are 

random and usually (but not always) independent.  

Laporte, Louveaux and Mercure (1989) proposed a two-

index chance constrained model for the VRPSC as well 

as an associated branch-and-cut algorithm capable of 

solving instances involving up to 30 vertices. They also 
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introduced a bounded penalty model in which the cost of 

recourse associated with a given route cannot exceed a 

preset proportion of the first stage route cost. The best 

exact solution approach for the VRPSD is again the 

integer L-shaped algorithm. Séguin (1994) and Gendreau, 

Laporte and Séguin (1995) proposed the first 

implementation of this method for the solution of the 

VRPSD and were able to solve instances of up to 70 

vertices. Laporte, Louveaux and Vanhamme (2002) 

imposed an additional restriction, namely that the 

expected demand of a route does not exceed the vehicle 

capacity, and they also exploited properties of the 

demand under known distributions (Poisson and normal) 

in the generation of lower bounding functionals on the 

cost of recourse.  

 

3. Problem Description and Solution 

 

This paper deals with a variation where customers' 

demands are uncertain and are assumed to follow given 

discrete probability distributions. This situation arises in 

practice whenever a distribution company faces the 

problem of deliveries to a set of customers, whose 

demands are uncertain. This paper focuses on deliveries, 

but all the discussion carries through in case of 

collections especially. The problem of finding a tour 

through the customers that minimizes expected distance 

traveled is known as the vehicle routing problem with 

stochastic demands.  

I described a class of vehicle routing problems under 

demand uncertainty as follows: Let the set of nodes of a 

given complete network be (0, 1, 2, …., m). Node 0 

denotes the depot and each number (1, 2, ..., m) 

represents the set of customers' locations. Distances d (x , 

y) between nodes are assumed to be known. Q denotes 

vehicle capacity. The multi-vehicle is assumed. This is 

equivalent to assuming that a set of customers has been 

assigned to receive service by a given vehicle. Let ξi (i = 

1, 2,…. m) be the random variable that describes the 

demand of customer i. The probability distribution of ξi 

is discrete and known, and is denoted by pik=Prob(ξi = 

k), k = 0, 1,…K = Q. Customers' demands are assumed 

to be stochastically independent, and their realizations 

become known upon the first arrival of the vehicle at 

each customer location. The vehicle is initially located at 

the depot. During service, when capacity is reached or 

exceeded, a return trip to the depot is performed in order 

to restore capacity up to Q. When all demands have been 

satisfied, the vehicle returns to the depot. The problem is 

to find a set of a priori routes, each to be served by a 

vehicle, such that customer demands on the route are 

fully satisfied and the total expected cost (distance) is 

minimized. Actual demand is revealed only upon visiting 

the customer. If there is a route failure at any node, the 

resource action is for the truck to travel back to depot for 

restocking and then to resume its journey as planned at 

the point where failure occurred. To reduce the 

likelihood of route failure, upon a service completion at a 

node, the vehicle can choose to (1) go directly to the next 

node and risk a shortage along the route, or (2) go back 

to the depot, restock to a full truck load, and then 

continue the journey with a cost for the restocking trip. 

(Yang, Mathur & Ballou, 2000)  

 

Steps of solution are as follows: 

� Step 1 (Seed selection) 

: Choose seed points 
k
j  in V to initialize each 

cluster k , based on the Pareto law. 

� Step 2 (Allocation of customers to seeds) 

: Compute the traveling cost (distance) 
ik
d of allocating 

each customer i to each cluster k as 

0 0 0 0 0 0
min{ , } ( )

k k k k k k k
ij i ij j j j i i j j
d c c c c c c c c= + + + + − + . 

The truck is loaded with full capacity and starting from 
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the depot, it goes to each customer (node) i . And then 

first route sequence is determined. 

� Step 3 (Route Construction) 

: Demand of customer (node) i is satisfied. After that, if 

remaining amount on the truck is greater than full 

capacity at node i , the truck goes directly to the next 

customer of route sequence. If remaining amount on the 

truck is less than full capacity at node i , the truck goes 

back to the depot for preventive restocking and then 

continues the trip with a full capacity. And compute the 

service level of each cluster k . 

� Step 4 (Route Optimization) 

: If the demand of node i is greater than remaining 

amount on the truck, this is the situation of route failure. 

A mandatory restocking trip going to the depot and back 

to node i is then conducted. After satisfying all of the 

demand at node i, the truck return to the depot with 

remaining load. 

 

 

 

Starting from the top of the demands list, based on the 

Pareto law for choosing seed points in the number of 

vehicle route m to initialize each cluster, feasible clusters 

are initially formed by rotating a ray centered at the 

depot. The number of vehicle route m is fixed a priori, 

proposing a geometric method based on the partition of 

the plane into m cones according to the customer weights. 

The seed points are dummy customer located along the 

rays bisecting the cones. Once the clusters have been 

determined, the TSPs are solved optimally using a 

constraint relaxation based approach. Vehicle routes are 

then constructed by inserting at each step the customer 

assigned to that route seed having the least insertion cost. 

For this problem, the optimal a first route sequence is 

6→8→7→5→4→3→2, second route is 

10→9→11→14→13→12 and third route is 

21→16→15→18→17→19→20 with the optimal 

restocking policy of returning to the depot if the 

remaining amount on the truck after serving customer i  

is less than truck capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithms described in the preceding section have 

been applied to several problems with stochastic 

demands. These problems are extension of the 21-
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Figure 1. Step 3 : Route construction by corresponding TSP 
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customers. The problems were constructed by adding a 

customer demand standard deviation at each delivery (or 

pickup) location. The customer demand quantity is used 

as the mean demand at each location. The standard 

deviations in customer demand were generated using a 

variation of demands. 

Table 1. The computational result after first route construction  

After 

Optimization 
Route A Route B Route C 

traveling course 

6→8→ 

7→5→ 

4→3→ 

2 

10→9→ 

11→14→ 

13→12 

21→16→ 

15→18→ 

17→19→ 

20 

total distance 

traveled 
2,590 m 2,617 m 2,480 m 

total customer 

demand 
2.1 ton 2.2 ton 2.0 m 

average demand 

standard deviation 
0.33 0.53 0.607 

customer 

service level 
88 % 71 % 79 % 

 

 

 

In each of the problems tested, the demands are assumed 

to be independent of each other and normally distributed. 

From considering of customer demand standard 

deviation, the new route sequencing is revealed. With re-

optimization considering customer service level, the 

route starts with same initial depot, but the route 

sequencing is different Figure 1. The re-optimization 

route calls for a new sequence of Route A 

(12→11→10→4→3→2), Route B 

(9→13→14→15→18→17→19→20), and Route C 

(6→7→8→5→16→21). With the new route sequence, 

no more route failure occurs at each route.  

Table 2. The computational optimal after the resequencing 

After 

Optimization 
Route A Route B Route C 

traveling  

course 

12→11→ 

10→4→ 

3→2 

9→13→ 

14→15→ 

18→17→ 

19→20 

6→7→ 

8→5→ 

16→21 

total customer 

demand 
2.1 ton 2.1 ton 2.1 ton 

average demand 

standard deviation 
0.54 0.52 0.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total distance traveled is 7,891 m. The path followed 

by the vehicle with this re-optimization is shown on 

Figure 2. Table 2 tabulates the execution of the policy 

after the resequencing. 
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Figure 2. Step 3 : Route Optimization considering each customer service level 
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5. Findings and Conclusion 

 

The standard VRP model usually needs to be extended in 

order to solve real world vehicle routing problems. This 

work has studied a unique approach to the SVRPs. 

Instead of adopting a simple recourse action usually 

suggested in the literature, optimal restocking policy of 

the vehicle has been incorporated in the route design 

considering customer service level. That is the restocking 

points are deliberately planned along the route, such that 

probability of the route failure and the accompanying 

recourse cost (including any possible penalty) is reduced 

and the total customer service level of the routes is 

enhanced. On the algorithmic side, Customer service 

level has probably come to concentrate on the 

development of faster, simpler (with fewer parameters) 

and more robust algorithms, even if this causes a small 

loss in solution quality.  
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