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Abstract - In this paper, a fault diagnosis and control integrated
system (FDCIS) was developed to control the thermoelectric (TE) power
in the SP-100 space reactor. The objectives of the proposed model
predictive control were to minimize both the difference between the
predicted TE power and the desired power, and the varation of control
drum angle that adjusts the control reactivity. Also, the objectives were
subject to maximum and minimum control drum angle and maximum
drum angle variation speed. A genetic algorithm was used to optimize
the model predictive controller. The model predictive controller was
integrated with a fault detection and diagnostics algorithm so that the
controller can work properly even under input and output measurement
faults. With the presence of faults, the control law was reconfigured
using online estimates of the measurements. Simulation results of the
proposed controller showed that the TE generator power level controlled
by the proposed controller could track the target power level effectively
even under measurement faults, satisfying all control constraints.
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The SP-100 space nuclear reactor was designed to provide a realistic
and reliable source of very long-term power for space exploration and
exploitation activities,. The SP-100 system is a fast spectrum
lithium-cooled reactor system with an electric power rating of 100 kW
[11. In order to accomplish a space mission with uncertain environment,
- rare events, and communication delays, all the control functions must be
achieved through a sophisticated control system with a limited degree of
human intervention from the earth. Therefore, to preserve the safety and
reliability of processes, the presence of faults must be taken into account
during the control system design. This paper employs the model
predictive control (MPC) method [2], which has received increased
attention as a powerful tool for the control of industrial process systems.
The dynamics of the SP-100 reactor system are highly non-linear.
Therefore, a nonlinear MPC methodology has to be applied to predict the
future behavior of the plant based on a nonlinear model of the process.
In this paper, the nonlinear model development was carried out by a
fuzzy model because fuzzy models are simpler in structure and easier to
develop compared to other nonlinear models. Also, regarding the
nonlinear optimization problem, conventional optimization techniques
cannot be easily applied due to the peculiarity of fuzzy models.
Therefore, the on-line optimization problem is solved using a genetic
algorithm. In addition, another fuzzy model estimates the input and
output of the control system by using other process signals, and the
residuals between the estimated signals and the measured signals are
used to determine the health of the measurement instruments by using
the sequential probability ratio test (SPRT).
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2.1 MPC Combined with a Fuzzy Model

The basic idea of MPC is to calculate a sequence of future control
signals in such a way that it minimizes a multistage cost function
defined over a prediction horizon. A performance index for deriving an
optimal control input is represented by the following quadratic function:
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For any assumed set of present and future control moves, the future
behavior of the process outputs can be predicted over a prediction
horizon L, and the A7 present and future control moves (M < L) are
calculated to minimize the quadratic objective function of (1). Although
M control moves are calculated, only the first control move is
implemented. At the next time step, new values of the measured output
are obtained, the control horizon is shifted forward by one step, and the
same calculations are repeated. The purpose of taking new measurements
at each time step is to compensate for unmeasured disturbances and
model inaccuracies, both of which make the measured system output to
be different from the one predicted by the fuzzy model

In this paper, a fuzzy model based on subtractive clustering (SC) [3]
was used to predict the future output of the model predictive controller.
The i-th fuzzy rule for t~th time instant data is described as follows:

If ye-d-1) is 4y(0) AND~-AND y(t-d-n,) is 4, ()
AND Au(t-) is Ai,nyﬂ(') AND---AND Au(t—nu) is Ai,nyM“(t)'

then §,(0) is f;(y(t-d -, -, yi-d-n,), Bu(t-1), -, Au(l—n,,))

2

The fuzzy model consists of a total of n fuzzy rules. The input vector
to the fuzzy model consists of y and Au which are past values of
output and control input move, respectively:

x(t)=[y(t—d—1)~--y(t—d—ny) Au(t—l)-‘-Au(t——nu)]_ 3

When the SC method is applied to a collection of input/output data,
each cluster center is in essence a prototypical data point that
exemplifies a characteristic behavior of the system and each cluster
center can be used as the basis of a fuzzy rule that describes the
system behavior. Therefore, a fuzzy model can be developed based on
the results of the SC technique. The number of n fuzzy rules can be
generated, where the premise parts are fuzzy sets, defined by the cluster
centers that are obtained by the SC algorithm. The membership function
value A4;(x()) of an input data vector X@t) to a cluster center X(:)

can be defined as follows:
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The fuzzy model output §(t) is calculated by the weighted average of
the consequent parts of the fuzzy rules as follows:
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where the function fi(x(z)) is a polynomial in the input variables and
represented by the first-order polynomial of inputs as follow:
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The parameters, ¢;; and 7;, are calculated with the & training
input/output data pairs. Conventional optimization techniques for solving
the cost functions of (1) cannot be easily applied due to the peculiarity
of a fuzzy model that is basically a nonlinear model. Therefore, the
on-line nonlinear optimization problem is solved using a genetic
algorithm, which guarantees the feasibility of all the generated potential
solutions,. A chromosome which is a candidate solution of the
optimization problem is represented by s,, whose elements consist of

present and future control inputs and has the following structure:
sg =[4,(0) u t+D) u(t+M =], g=1-,G )

The genetic algorithm proceeds according to the six steps: initial
population generation, fitness function evaluation, selection operation,
crossover operation, mutation operation, and repeat or stop (refer to
references [4]).

2.2 FDCIS

In this paper, a fault detection and diagnostics algorithm was
developed to estimate the input and output measurements using a fuzzy
model based on the subtractive clustering method and to check the
operability of existing hardware sensors using a SPRT [5] so that the
FDCIS can handle the fault situations of the input and output
measurements or partial loss of actuators. In this paper, a fuzzy model
was used to estimate the input and output measurement signals. This
fuzzy model is another fuzzy model which is different from the fuzzy
model that predicts the system output, which is needed to minimize the
control objective function. In this paper, the control input signal is the
control drum angle to regulate the reactivity and the output signal to be
controlled is the TE power. These input and output signals are basically
measured. Also, to handle the sensor faults, the input and output signals
of the control system are estimated by using a fuzzy model for signal
estimation from the measurements of the SP-100 reactor system. The
residuals between the estimated signals and the measured signals are
used to detect the sensor faults by applying the SPRT. If the input or
output sensors are normal, the measured values are used to predict the
future control system output. But if they are determined to be degraded
or faulty, the faulty sensors are isolated and the estimated sensor signals
instead of the measured values are used to predict the future system
output. That is, with the presence of faults, the control law is
reconfigured using online estimates of the measurements. Although the
control structure is not completely changed, it is suitably reconfigured to
use estimates rather than measurements. This means that the measured
values of (3) to be used in the output prediction, X(t), are replaced by
the estimated values after the measurement faults are detected and
isolated. The schematic block diagram of the proposed FTC is illustrated
in Fig. L.

2.3 Application to the SP-100 Space Reactor

The SP-100 space reactor system is a fast spectrum lithium-cooled
reactor system that can generate electric power of 100 kW for space
exploration and exploitation activities. The reactor system is made up of
a reactor core, a primary heat transport loop, a TE generator, and a
secondary heat transport loop to reject waste heat into space through
radiators. The reactor core is composed of small disks of highly enriched
(93%) uranium nitride fuel contained in sealed tubes. The heat generated
in the reactor core is transported by liquid lithium and is circulated by
electromagnetic (EM)pumps. The energy conversion system uses the
direct TE conversion mechanism. A temperature drop of about 500 K is
maintained across the TE elements by the cooling effect of a second
liquid lithium loop that transfers the waste heat from the converter to a
heat-pipe radiator. Figure 2 shows the performance of the proposed FTC
for normal transients such as the setpoint change of TE power. It is
shown that the TE generator power follows its desired setpoint change
very well. Figure 3 shows the performance of the proposed FTC against
output measurement fault (drift type fault). The output measurement is
assumed to start to be gradually degraded on purpose from 300 sec and
the fault detection and diagnostics algorithm detects the output
measurement degradation at 241 sec since the beginning of the gradual
degradation. After detecting the fault, the FTC uses the estimated output
signals instead of the measured output signal. It is shown that the TE
generator power follows its desired setpoint change very well.
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In this paper, a FDCIS was developed to control the nuclear power in
the SP-100 space reactor system. Based on a fuzzy model consisting of
the control drum angle change and the TE power, the future TE power
is predicted by using the fuzzy model identified with a subtractive
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clustering method of a fast and robust algorithm. Another fuzzy model
combined with the sequential probability ratio test estimates the input
and output measurement signals and diagnoses the health of input and
output measurements. The genetic algorithm was used to optimize the
model predictive controller and both the fuzzy models. With the presence
of faults, the control law is reconfigured using online estimates of the
measurements. The performance of the new proposed controller was
proved to be efficient even under constraint changes and gradual sensor
degradation (fault).
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Fig. 1. Block diagram of the proposed FDCIS.
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Fig. 2. Performance of the proposed FDCIS for normal

transients.
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Fig. 3. Performance of the proposed FDCIS against output
measurement fault (drift type fault).



