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Numerical Solution of All Stabilizing PID Controllers for Non-Parametric Model
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*Chungbuk National University, “"Ajou Motor College

Abstract - This paper presents a numerical solution of PID controller
design. The complete set of PID controllers stabilizing an LTI plant that
solely determined from the knowledge of the frequency response and the
number of unstable poles of the plant. An illustrative example is given
to describe implementation of the design algorithm and exhibit graphical
displays of the feasible regions of the design parameters.
1. Introduction

It is always desirable to use a fixed-structure, low-order controller
(e.g. PID or first-order controller) due to its simplicity and effectiveness
in industrial applications. They can be designed by loop shaping, from
the frequency response data, or a mathematical model (transfer function
or steady-state model) of the plant to be controlled. Some results are
developed to characterize the complete set of PID controllers for a given
plant transfer functionf1-4). However, the analytical model is not easy to
obtain in many practical situations without identification of the system.

Recently, a new design approach for PID controllers that stabilizes an
LTI plant and achieves several performance specifications has been
introduced(5). In this method, knowledge of the frequency response and
the number of RHP poles of the plant is solely available for design.
However, it is hard to implement the design algorithm in software based
on the numeric computation. This paper provides the numerical solution
for such a control system design and show an effective visualization of
the results, the feasible regions of the controller parameters, with 2-D
and 3-D graphics.

2. PID Controller Design for Non-Parametric Model

Consider the feedback control system given by an LTI plant and a
PID controller as shown in Fig. 1.

Fig. 1. A unity feedback system

Let the controller be
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We first make some assumptions:
1. The plant has » poles and m zeros, but no poles or zeros in jw
axis.
2. The only information available for design is )
i) knowledge of the frequency response magnitude and phase, ie,
Gljw) = 1Gw)le™ ™), for wE[0, 00),
ii) knowledge of the number of the RHP poles p,.
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2.1 PID controller design algorithm

All stabilizing set of PID controllers can be computed by the following
procedure.

Step 1 Determine the relative degree n—m and the number of RHP
zeros z, from (a) and (b) respectively.

(a) The slope of the bode magnitude diagram in hlgh frequency is
— (n—m) x 20dB/decade .

(b} The net phase change of Gjw) is

A8 (¢)=— % [((n—m)~2(p, —2,)].

Step 2¢ Pick up a fixed K, = K: and solve
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Let the solution be 0<w <w, <-<w_, which denote the distinct
finite frequencies. Also define wy =0, w, = o0,

Step 3: Determine the admissible strings of integers 4,&{(—1,0,1)} for

P

t=0,1,-,! and jE{~1,1} so that
i-1
[io +23 (1) + (- 1)‘1‘,] « (=1, n—m=even
o= s ®)
[i0+22(—1)'i,] o (=1)71, n—m=odd
r=1
where o=n—m+2z_,,.
Step 4: Solve for the stabilizing (K;, K} set,
[K — K+ ‘”‘Tg‘ﬁ()“‘")] «i, >0, for £=0,1,-,1, ®

Step 5 Repeat the step 2-4 by updating K, over the pre-determined
range.
The detailed derivation of the above result is referred to [5].

2.2 Description of the Matlab based implementation

Solving engineering and industrial problems by using computer
algorithm is coming reality nowadays. Thus, we explain how we have
practically implemented the PID controller design algorithm with Matlab
software. The design frame is shown in Fig. 2.

| Find teasible range of ko |

——
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2~-D display

!

Compuie the complete set of
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Fig. 2. A stabilizing PID controller design flow

Since the PID controller parameter &, and (&, K;) can be computed
independently as in (4) and (6), it requires to sweep one of them XK.
And the feasible range of K, is determined by the required signature for
stability condition based on the generalization of the Hermite-Biehler
Theorem([1]. However, the interval of K, is theocratically not bounded
and opens to infinity in some cases. Thus, it is necessary to give a
limitation of the frequency for sweeping and provide the number of the
K,s to be simulated. To get the stabilizing (;, K;) set, the numerical
ranges of K, K; gains for computing alsc need to be given previously.

The Matlab scripts for finding the complete set of stabilizing PID
gains are given as follows.

>>[sigma, nm, zrj=CetSigma(Mag, Phase, W, pr);

>>[KpRange, mag, phase, wj=GetFeasibleKp(Mag, Phase, W, MaxOmega, sigma, nm};
>>Kpr=User2KpRange(KpRange);

>>KpMin=Kpr(1); KpMax=Kpr(2); KpNo=Kpr(3); Kp=linspace(KpMin, KpMax, KpNo);




>>for Index=1:KpNo
kp=Kp{Index);
[pmag, theta, wil=GetWi(mag, phase, w, sigma, nm, kp, MaxOmega);
A=GetStringSet(sigma, nm, phase, wi);
[ki, kd}=Kp2KiKd{pmag, theta, wi, nm, kp, MaxKi, MaxKd, A);
end

Herein, the input parameters are the frequency(W) and its response
magnitude(Mag), phase(Phase), and the number of the RHP poles(pr) of
the plant. And the maximum value(MaxOmega) of the frequency for
sweeping and the limitation of the K;, K, values(MaxKi, MaxKd) are also
given for simulation. The output is the design PID gain(kp, ki, kd).

Finally, the result of the stabilizing region in (K,-,K;) plane for a
fixed value K, is depicted as 2-D graphics. And the entire stabilizing
PID gains for the selected number of K;,s in the feasible range are
described to be a 3-D visualization. It is important to note that the 3-D
graphic is composed by a set of convex polygonal slices.

3. Numerical Example

In this section, we give a numerical example to show the PID
controller design procedure.
Example I: Consider a stable plant whose bode diagram is given in
Fig. 2.
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Fig. 2. Bode diagram of the plant

Since the plant is stable, the number of RHP poles is p, =0. Step 1

provides the knowledge of the plant and thus the feasible range of the
sweeping parameter is given in- Fig. 3. In this example, the feasible
range is found to be K,&(—8.497, 4.233).
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Fig. 3. Feasible range of X,

When a specific value of K, =1 is fixed, we obtain the admissible
region of (K, K,) values by performing step 2-4. The 2-D region is
shown in Fig. 4 And step 5 provides the complete set of stabilizing
PID controllers. The controller gains are depicted as a set of convex
polygon slices in Fig. 5.
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Fig. 5. All stabilizing set of (K, K, K,) values

4. Concluding Remarks

In this paper, a new design methodology of computing the complete
set of stabilizing PID controllers for non-parametric model has been
implemented. The proposed design procedure dose not need any
mathematical plant model, but solely require the knowledge of the
frequency response and non-minimum phase poles of the plant. The
obtained all stabilizing set of PID controllers are illustrated by the 2-D
and 3-D graphics so as to be useful for computer-aided design. The
extension to the implementation of multi-objective design for several
performance requirements, such as gain and phase margin, and H,

margin, is now underway.
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