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Abstract - This paper presents a "window-zoom-out”
optirnization strategy with relatively fewer sampling
data. In this method, an optimal Latin hypercube
sampling experiment based on multi-objective Pareto
optimization is developed to obtain the sampling data.
The response surface method with multiquadric radial
basis function combined with (1+4) evolution strategy
is used to find the global optimal point. The proposed
method is verified with numerical experiments.

1. Introduction

For the optimization of electromagnetic devices, one
of most popular techniques is to construct a surrogate
model in design space [1], which is sufficiently
accurate to replace the original code. In general, if the
number of sampling data points is sufficient, the
global optimal point can be obtained at one time.
However, having sufficient sampling data requires
huge computational efforts when the objective function
value is involved with finite element analysis.

In this paper, a "window-zoom-out” optimization
strategy with relatively fewer sampling data is
presented. To insert the sampling data adaptively in
successive "zoom-out” design space and improve the
quality of distribution of sampling data, an optimal
Latin Hypercube Sampling (LHS) strategy based on
multi-objective Pareto optimization is developed. The
response surface method (RSM) with multiquadric
radial basis function combined with (1+A) evolution
strategy is used to find the global optimal point.
Numerical tests are applied to validate the
performance and reliability of the proposed algorithm.

2. Optimization Strategy

The proposed optimization strategy described as
"window-zoom-out” is summarized in Fig.l. At the
initial iteration stage, the response surface is
constructed at relatively small number of sampling
points in the whole design space and (1+A) evolution
strategy is started to find the optimal point,
hereinatter referred to “pseudo-optimal point”. Once
the pseudo-optimal point is found, it is used as a
central point for the definition of "zoom-out” design
space, in which the additional sampling points are
inserted by means of LHS experiment. Then, the
response surface is constructed again and the
procedure is iterated until the pseudo-optimal point

found at two successive iterations does not change
significantly. At that time, the pseudo-optimal point
can be considered as the true global optimal point.

2.1 initial Latin Hypercube Sampling Using Pareto
Optimization

Latin hypercube sampling is a type of “space
filling” experiment design strategies [2]. A Latin
hypercube sampling is an n x k matrix where n is
the number of sampling points data and k is the
number of design variables. Each variable is divided
into n intervals on the basis of equal probability and
each of the k columns is a random permutation of {1,
=, n} which can be mapped onto the actual range of
the variables. In practice, a LHS can be randomly
generated, but a randomly selected LHS may have
bad properties and act poorly in estimation and
prediction, as shown in Fig. 2(b). An approach is to
use optimal LHS designs according to some criteria to
find especially good sampling data points.

A) Minimax Criterion

If design D, is a minimax criterion design, D,,
is defined as follows:

mDin mxax d(x, D)= mflx d(x, DM,)

(1)
2

Where, d(®,*) is a distance between any two points,

D is a random LHS design, and x is any point in

design space. Minimax criterion ensures that all

sampling points are not too far from a design point.
B) Maximin Criterion

d(x, D)= min d(x, x.,)_

Design Dy, is a maximin criterion design if

Step 1. Generate initial sampling data using LHS in the
whole design variable space.

Step 2. Construct the response surface with an optimal
shape parameter and find a pseudo-optimal

point using (1+ 4) evolution strategy.

Step 3. Check whether the pseudo-optimal point is
convergent. If converged, stop and otherwise,
go to next step.

Step 4. Generate additional sampling data within the
reduced design space using the LHSmethod at
the neighborhood of current
pseudo-optimalpoint, and go to Step 2.

Fig. 1. Summary of the optimization strategy.

- 162 -



(c) Mavamin criterion

e
(b) Random LS~ °

By
S

<) Minimax criterion
s

o1 . 2.
852 a3 ok 0% 0% U5 oM om 05 ast
MiniMax Criter

(a) Pareto front in the fitness space

1 s ! .
- ¢ L]
.
oaf '. 08 . .
. -
os[® . 08 . R
] * [ & ¢ [
o ® . o4t ¢ .
L] .
L] » L]
o2 .. 02 .
L] . * .
%7 04 08 08 62 04 06 08
xt x
(b) Random LHS. (c) Maximin criterion
1 - v
L] . M .
os . * o8 ¢ . .
. M * .
o8 . o8 .
o . . . o .
»
o4 . 04 .
. . .
02 . 02
. * * ¢ .
o ° hd o .
02 0.4 06 08 1 02 [-X) 06 [ 1]
a «

(d) Minimax criterion (e) Pareto-optimization

Fig. 2. Latin hypercube sampling design of size n=20 with two de
sign variables.

max min d(x,x,)= min d(x,x,) @
Maximin criterion designs ensure that no two
sampling points are too close to each other.

C) Pareto-optimization

In the minimax criterion designs, it often happens
that the distance between two sampling points is
obviously closer than that between others, as shown
in Fig. 2(d). On the contrary, the maximin criterion
designs always try to increase the distance between
two sampling points so that some sampling points
locate unexpectedly on the boundary of the design
space, as shown in Fig. 2(c). In order to consider the
two design criterions simultaneously, a multi-objective
Pareto optimization is presented to select good LHS
design towards the Pareto front rather than towards
an absolute minimum or maximum. In our case, the
final Pareto curve represents the solutions from
considering maximin criterion to considering minimax
criterion, as shown in Fig. 2(a). This allows us to
choose an acceptable tradeoff between the two goals
by picking a point somewhere along the Pareto front.
Fig. 2(e) is selected as a good LHS design with the
property of more uniform distribution.

2.2 Adaptively Inserted LHS Data Based on Gaussian
distribution

Based on Gaussian distribution function, by
making the mean value u correspond to the current
pseudo-optimal point, we can make the inserted

@ Sapling points (isial scration)
¢  Saxpling poirnts (sccond ilcration)
8 Preudoom o initial ierasion)

===~ Reducod design space

Fig. 3. The insertion of the sampling points using LHS design.

sampling data distributed around the pseudo-optimal
point, and by modifying the standard deviation o0, we
can control the degree of closeness of the new
sampling data to pseudo-optimal point. A user
selectable flag can be used to control the size of the
"window-zoom-out” design space. The use of the
selectable flag and o increases the robustness of the
method, because, especially during the first iterations,
the procedure is able to scan the design space
broadly, without remaining trapped in narrow regions.
At this stage, the Pareto optimization is also applied
to generate additional sampling data. Fig. 3 shows the
distribution of sampling points both the initial stage
and the second iteration.

2.3 RSM with Multiquadric Radial Basis Function

In the global interpolation strategy of the objective
function, the RSM using multiquadric radial basis
functions is one of the most impressive from the
viewpoint of its smoothness and fitting ability with a
limited number of sampling points in the design
space. With given sampling data, the response surface
is constructed as follows [3]:

N
s@=3ax-xJ +» ) “
X ={(x,. f(x)),i=1,2, N} ©)
where ||+l is Euclidean distance, x is the design

parameter vector, 8; is the coefficient corresponding

to the i-th sampling point X;, X is the set of
sampling data of size N, and h is the shape
parameter.

The shape parameter, h, has an effect on the
smoothness and accuracy of the interpolation. In the
present work, we employ (1+A) evolution strategy to
find the optimal h that minimizes the interpolation
error of response surface, described as the
"leave-one-out” method [3]

3. Numerical Experiment

In order to illustrate graphically the proposed
procedure, a test case with an objective function
depending on two design variables is presented. The
objective function and constraints are given as:

Mrnimize Flx)=3(1=z,fiel"=~ 22 6)
z, N N
—IO(?—zf—zg)e i ”—-:-’-e AR

Subject to —3.0<x,<3.0 (7N
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The global optimal point is located at (0.2282,
-16256) with the corresponding function value
-65511[4]. Fig. 4 shows a comparison of the response
surfaces with the pseudo-optimal points during the
iterations for optimization. At the initial iteration, a
response surface is constructed by using 25 sampling
points generated in the whole design space using the
LHS design. By applying the suggested optimization
algorithm, a pseudo-optimal point (x).%))=
(0.5035, —1.400) is obtained, as shown in Fig. 4(a).

At the second iteration, 16 additional sampling
points are inserted at the neighborhood of the
previously obtained pseudo-optimal point in the
reduced design space by a factor of 0.85. By repeating
the iterations for optimization, the pseudo-optimal
point moves to (x,,x,)=(0.2432,—1.6299) at second
iteration, (x,;.x,)=(0.2292,—1.6278) at the third iteration
with 11 additional sampling points, and finally
(x,.2,)=1(0.2278, - 1.6254) at fourth iteration with 6
additional sampling points, as shown in Fig. 4. Fig. 5
shows the convergency of the objective function value
during the iterations for optimization. It can be seen
that the pseudo-optimal point can be converged to the
true global optimal point as the number of inserted
sampling points and the size of "window-zoom-out”
design space reduce gradually.

4. Conclusion

A global optimization algorithm is suggested by
combining a type of "space filling” experiment
designs and response surface function approximation.
An optimal LHS design based on multi-objective
Pareto optimization is developed to sample the design
space uniformly. A "window-zoom-out” optimization
strategy with relatively fewer sampling data is
presented. The RSM with multiquadric radial basis
function combined with (1+A) evolution strategy is
used to find the global optimal point. The numerical
results from the test example reveal that the global
optimal point can be found accurately.

Further activity is under the way to show the
ability of significantly reducing the computation cost
of finite element analysis for the optimization design
of the electromagnetic devices in comparison with
other optimization strategies.
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Fig. 4. Response surfaces and movement of the pseudo-optimal
point.
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Fig. 5. (a) The convergency of the objective function value during
the iterations for optimization, Xopt means pseudo-optimal point.
(b) Trajectory of Xopt.
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