T-P13

Memory characteristics of MOS with doubly stacked silicon nanocrystals

Eunkyeom Kim, Kyoungmin Kim, Daeho Son, Jeongho Kim, Myeongwook Bae¹, Juhyoung Lee, Moonsup Han¹, Wanshick Hong, Junghyun Sok, and Kyoungwan Park*

Department of Nano Science & Technology, University of Seoul, Seoul, KOREA

Department of Physics, University of Seoul, Seoul, KOREA

Doubly stacked Si nanocrystals in a metal-oxide-semiconductor (MOS) structure are investigated. The structures are created with up to two layers of size-controlled Si nanoclusters having a size of around 15 nm. In this work, a 7 nm thick SiO₂ film was thermally grown on p-type (100) silicon substrates (14 \sim 16 Ω cm) at 880°C in dry oxidation furnace for the tunneling oxide layer, and then one or two layers of silicon nanoclusters were deposited by LPCVD at 640°C with helium-diluted 5 % SiH₄ as a source gas. Furthermore, two layers of silicon nanoclusters were separated by a 10 nm thick SiO₂ using LPCVD at 400°C with mixed gases of SiH₄ and O₂. The density of the silicon nanocluster whose size is 15 nm in average diameter was about 2.5 x 10^{11} #/cm². Then the control oxide was deposited 30 nm thick SiO₂ using LPCVD at 400°C with mixed gases of SiH₄ and O₂. We fabricate a MOS structure with the doubly stacked Si nanocrystals in the gate oxide and investigate the C-V properties, which will be discussed.