S-P01 ## Surface science of ice: Proton transfer from H₃O⁺ to NH₃, CH₃NH₂, and (CH₃)₂NH on D₂O-ice films Joon-Ki Kim, Seong-Chan Park¹, Eui-Seong Moon¹, Heon Kang¹ Department of Chemistry, Seoul National University, Gwanak-gu, Seoul, Republic of Korea We have studied protonation reactions of amine bases (NH₃, CH₃NH₂ and (CH₃)₂NH) on D₂O-ice films at temperatures selected from 50 to 140 K. Although the proton affinity of amines in water or gas phase is well known, that on ice has not been reported yet. It is meaningful to study the protonation of amine bases on ice films. We prepare ice films by exposing D₂O water vapor on a Ru(001) substrate in an UHV chamber, and H₃O⁺ ions are created by spontaneous HCl ionization on D₂O-ice at 140 K.¹⁾ Subsequently, NH₃, CH₃NH₂, and (CH₃)₂NH are deposited on the film. Protons are transferred from hydronium ions to the amine bases, which form ammonium ions (RNH₃⁺)²⁾ and are detected by low energy sputtering (LES). Non-protonated amines are also detected by Cs⁺ reactive ion scattering (RIS). The elaborated calibrations of the ion intensities from RIS and LES give a reaction quotient at the selected ice temperatures. This work shows an unique capability of RIS and LES for identifying the proton motion between acids and bases on condensed molecular films. ## [참고문헌] - 1. H. Kang, T.-H. Shin, S.-C. Park, I. K. Kim, and S.-J. Han, J. Am. Chem. Soc. 2000, 122, 9842. - 2. S.-C. Park, K.-W. Maeng, T. Pradeep, and Heon Kang, Angew. Chem. Int. Ed. 2001, 40, 1497.