Electron Microscopy Analysis of the Superconducting Malic

Acid Doped MgB2 Wires Seong Gu Kang^a, Jun-Ki Chung^b, Sung Chang Park^a, Byung-Hyuk Jun^c,

Chan-Joong Kim^c, Cheol Jin Kim^a

^a i-cube center, Gyeongsang National University, Jinju, Korea ^b Institute of Industrial Technology, Changwon National University Changwon,Korea ^c Korea Atomic Energy Research Institute, Taejeon, Korea

The morphology and chemistry of the malic acid ($C_4H_6O_5$) doped MgB₂ wires have been characterized by FE-SEM and FE-TEM. MgB₂ wires have been fabricated using malic acid as a carbon source through Powder-In-Tube (PIT) process using pure Fe as sheath material and sintering at $650 \,^{\circ}C\sim 1000 \,^{\circ}C$. The superconducting properties such as T_c and H_{c2} increased as the sintering temperature increased up to 900 $^{\circ}C$. The grains with sphere shape in the sample are well connected but the sample has a low density. Also, as sintering temperature increases, void size decreased. To investigate the correlation between microstructural features and superconducting properties of the malic acid doped MgB₂ wires with different heat-treatment, TEM and EDS analyses were performed on the specimens were prepared by tripod polishing and ion milling method. The morphology of the malic acid doped MgB₂ appears inhomogeneous, consisting of crystalline grains from several tens of nanometers in size to 500 nm. Impurity particles with the size less than 5nm were embeded in the MgB₂ grain or grain boundaries, but the distribution was not uniform. Nano-sized carbon, MgO layer, and the other second phases have been characterized with HREM, STEM-EDS, and selected area diffraction.

Keywords: MgB₂, Wire, PIT, Malic acid, TEM