Role of the Sintering on Superconducting Properties of MgB₂ Wires Fabricated by the Ex-situ and In-situ Process

Chang-Min Lee^a, Seok Hern Jang^a, Jun Hyung Lim^a, Eui Cheol Park^a,

Soo Min Hwang^a, Si Hong Park^a, Jinho Joo^a, Chan-Joong Kim^b, Won Nam Kang^c

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Korea

^bNuclear Nanomaterials Development Laboratory, Korea Atomic Energy Research Institute, Daejeon, Korea ^cDepartment of Physics, Sungkyunkwan University, Suwon, Korea

We fabricated MgB₂ wires by the powder-in-tube (PIT) method with both the ex-situ and in-situ processes and evaluated the role of the sintering on the microstructure and critical properties. For PIT fabrication, pure iron tubes were filled with MgB₂ and Mg/B powder, respectively. The sintering was performed at the temperature of 850 °C in an Ar atmosphere. The phase of the sintered wires was identified by XRD and the microstructures were observed by SEM. The critical current density (J_c) and critical temperature (T_c) were measured by magnetic property measurement system (MPMS) with the four probe method in a cryostat. It was observed that the critical properties of the sintered MgB₂ wire were superior to those of the as-drawn MgB₂ wire (without sintering) and the J_c and T_c of the sintered MgB₂ wire were 155 kA/cm² (at 5 K, 1.6 T) and 35 K, respectively. The influences of sintering process on critical properties of MgB₂ wires will be discussed with microstructural observation.

Keywords : sintering, PIT, MgB₂, ex-situ

Acknowledgement

This research was supported by a grant (R-2004-0-194) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.