The Effect of Doped CeO₂ on Critical Properties of YBCO Film on Single Crystal using MOCVD Method

S. H. Park^{a, b}, Y. H. Kim^c, B.-H. Jun^a, G. W. Hong^d, B. S. O^b, C.-J. Kim^a

^aNuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute(KAERI), Daejeon, Korea ^bDept. of Physics, Chungnam National University, Daejeon, Korea

^cDept. of Mat. Sci. & Eng. Korea Advanced Institute of Science and Technology(KAIST), Daejeon, Korea ^dGraduate school of Energy, Korea Polytechnic University, Siheung, Korea

To increase the critical current density (J_c) of Y₁Ba₂Cu₃O₇- δ (YBCO) film, deposition method, various studies on fabrication of mother substrate, buffer layer and dopants have been investigated. Recently, flux pinning effects by various dopants such as BaZrO₃ (BZO), CaZrO₃ (CZO) have been investigated. In this work, we investigated the pinning effect of BaCeO₃ (BCO) on the J_c of YBCO film. CeO₂-doped YBCO film was fabricated on MgO and SrTiO₃ single crystal substrates by metal organic chemical vapor deposition (MOCVD) method. The mole ratio of metal organic (MO) source was Y(tmhd)₃ : Ba(tmhd)₂ : Cu(tmhd)₂ = 1 : 2.1 : 2.9, and the YBCO film was prepared at deposition temperatures of 700 ~ 900 °C. Various amounts of CeO₂ were added to the MO source. The texture analysis and microstructural analysis of the cerium doped YBCO films were performed by x-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Superconducting properties of the CeO₂ doped YBCO films were measured and compared to undoped YBCO sample.

Keywords : CeO₂, YBCO, MOCVD, MgO, STO, BaCeO₃

Acknowledgement

This research was supported by a grant (R-2004-0-194) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.