Comparison of the Reaction Nature of YBa₂Cu₃O_x Synthesized from 99.9% BaCO₃ and 99.7% BaCO₃

Jong-back Moon³, Jung-Suk Choi¹, Byung-Hyuk Jun¹, Ho-Young Lee², Sang-Heon Lee³, Chan-Joong Kim¹

¹Nuclear Nano-material Development Laboratory, Korea Atomic Energy Research Institute ² Ceracom Co

^{3,} Department of Electronic engineering, Sunmoon University

 $YBa_2Cu_3O_x$ is synthesized by the conventional solid state reaction method using powders. The price of $YBa_2Cu_3O_x$ is decided by the price of the used raw material powders and the processing technique. To commercialize the $YBa_2Cu_3O_x$ powder, it is necessary to reduce the price. It is expected that the price can be reduced by using cheap raw material powders. The price of low purity $BaCO_3$ is much cheaper than high purity $BaCO_3$. In this study, we selected two different $BaCO_3$ powders of 99.9% (High Purity Chemicals, Japan) and 99.7% (China Product) and then synthesized $YBa_2Cu_3O_x$ powders by the solid state reaction. We mixed of the powders with Y_2O_3 and CuO powders of a purity of 99.9% and calcined the powder mixture at 800°C -900°C in air. We compared the reaction nature of $YBa_2Cu_3O_x$ when using two different $BaCO_3$ powders. The phase formation was investigated by X-ray diffraction method and SEM microscopy. The superconducting properties (T_c and J_c) were measured by means of four probe technique and SQUID magnetometer.

Keyword : YBa₂Cu₃O_x superconductor, raw material powders, BaCO₃, superconducting properties(T_c, J_c)