Effects of a Dead Layer at the Film-substrate Interface on the Microwave Surface Resistance of MgB₂ Films

E. K. Park^a, W. I. Yang^a, H. S. Jung^a, Y. H. Cho^a, J. H. Lee^a, S.G. Lee^b aDepartment of Physics, Konkuk University, Korean Agency for Technology and Standards

 MgB_2 films with stoichiometric composition often have a dead layer at the film-substrate interface with the layer thickness being as large as 30-50 nm. While studies on the effect of non-stoichiometric Mg-rich top layer on the microwave properties revealed that the microwave surface resistance R_s could decrease significantly after the top layer is removed by ion milling, roles of the dead layer on the R_s are little known. Here we study effects of the dead layer by comparing the RS values of MgB2 films determined with and without consideration of the dead layer with each other. Impedance transformation method is used to assess effects of the dead layer on the R_s . Attempts are made to explain effects of the dead layer on variations in the R_s after repeated ion milling of MgB2 films.

Keywords: MgB2, dead layer, Rs, impedance transformation method