Dispersion of T_{peak} - T_{end} from Multichannel Magnetocardiographic Measurements for Detection of Ischemia

H. Kwon^a, K. Kim^a, Y. H. Lee^a, J. M. Kim^a, H. K. Lim^a, Y. K. Park^a, N. Chung^b, Y. G. Ko^b, B. Joung^b, J. B. Kim^b, J. R. Cho^b

^a Bio-signal Research Center, Korea Research Institute of Standards and Science, Daejon, Korea ^b Cardiology Division, Department of internal medicine, Yonsei University Medical College, Korea ^c Superconductivity Research Center, Daejon, Korea

From canine studies, it has been suggested that full repolarization of the epicardium coincides with the peak of the T wave and that of the subendocardially located M cells coincides with the end of the T wave. From the recording of monophonic action potentials in swine, the ECG interval from the peak to the end of the T wave $(T_{peak} - T_{end})$ was found to be highly correlated with transmural dispersion of ventricular repolarization. In this preliminary study, we analyzed the dispersion of T_{peak} and T_{end} using magnetocardiography (MCG) of the normal subjects and MI patients. MCGs were recorded by multichannel SQUID system in a magnetically shielded room. As results, we found statistical differences of maximal $T_{peak} - T_{end}$ measuring an interval from the earliest T_{peak} to the latest T_{end} among the all MCG channels between the normal subjects and the MI patients. The results demonstrate that maximal $T_{peak} - T_{end}$ may be useful in diagnosis of ischemic disease.

Keywords: SQUID, Magnetocardiography, coronary artery disease, dispersion of ventricular repolarization