Numerical Simulation of Self-heating on Interlayer Tunneling Spectroscopy of $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCl}_{2} \mathrm{O}_{8+x}$

Jae-Hyun Park ${ }^{1}$, Hu-Jong Lee ${ }^{1,2}$
${ }^{1}$ Department of physics, Pohang University of Science and Technology, Pohang 790-784, Korea
${ }^{2}$ National Center for Nanomaterials Technology, Pohang 790-784, Korea

Abstract

Large self-heating arises for interlayer-tunneling-spectroscopic measurements on a small $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8+\mathrm{x}}$ ($\mathrm{Bi}-2212$) stack structure with lateral dimension of $\sim 3 \times 3 \mu \mathrm{~m}^{2}$, due to poor thermal conductivity of $\mathrm{Bi}-2212$. This increases the sample temperature by $\sim 150 \mathrm{~K}$ for a bias about $50-70 \mathrm{mV}$ per junction. In this study, we numerically estimate the self-heating around a Bi-2212 sample stack during $I-V$ or $d I / d V-V$ measurements. We estimate the temperature difference between the sample stack and the thermometer stack, which are assumed to be $0.5 \mu \mathrm{~m}$ apart from each other (this mimics the actual measurement configuration employed in our earlier studies). Our results show that the temperature nonuniformity due to self-heating is negligible ($<1 \mathrm{~K}$) along the c-axis direction of $\mathrm{Bi}-2212$ including the top Au electrode. On the other hand, the temperature discrepancy between the sample and the thermometer can be as large as $\sim 10 \mathrm{~K}$ for the highest bias assumed. Our results indicate that the thermometry using the Bi-2212 thermometry stack does not provide accurate-enough temperature reading of the sample stack. We will present a new in-situ ac thermometry using the Au current-bias electrode itself deposited on top of the sample stack, which may allow genuine temperature measurements of the Bi-2212 sample. Once the thermometry is accomplished accurately the self-heating can be eliminated by using the "heating compensation" technique [1] introduced by us previously, which may enable the genuine tunneling spectroscopic measurements.

[^0]Keywords: interlayer tunneling spectroscopy, $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8+\mathrm{x}}$, self-heating

[^0]: [1] Myung-Ho Bae, Jae-Hyun Choi, and Hu-Jong Lee, Applied Physics Letters 86, 232502 (2005).

