High-energy Pseudogap in Overdoped Bi₂Sr₂CaCu₂O_{8+x}

Myung-Ho Bae¹, Jae-Hyun Choi¹, Jae-Hyun Park¹, Hu-Jong Lee^{1,2}

¹Department of physics, Pohang University of Science and Technology, Pohang 790-784, Korea

²National Center for Nanomaterials Technology, Pohang 790-784, Korea

In this study, we performed a heating compensated interlayer tunneling spectroscopy on stacks of overdoped $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}$. The pseudogap onset temperature revealed by hump structure reached up to nearly room temperature in contrast to the ones determined by R_c -T curves. We clarified that the hump structure coexisting with superconducting peak below T_c is a real electronic density of states in CuO_2 plane through temperature dependence of hump-voltage position below T_c . The pseudogap observed in interlayer tunneling spectroscopy is related to the van-Hove-singularity-induced nesting near the antinodal region, *i.e.*, implying that he pseudogap is the high-energy pseudogap.

 $Keywords: interlayer \ tunneling \ spectroscopy, \ high-energy \ pseudogap, \ van \ Hove \ singularity, \\ Bi_2Sr_2CaCu_2O_{8+x}$