Raman Scattering Spectroscopy of Nd_{1+x}Ba_{2-x}Cu₃O₇ Coated Conductors Grown by Pulsed Laser Deposition

Y. M. Um^a, W. Jo^a, C. W. Seo^b, H. Cheong^b, S. H. Wee^c, S. I. Yoo^c

^a Ewha Womans University, Korea ^b Sogang University, Korea ^c Seoul National University, Korea

We analyzed Nd_{1+x}Ba_{2-x}Cu₃O₇ (NdBCO) coated conductors grown at various substrate temperatures by using Raman spectroscopy. Epitaxial NdBCO films were deposited on IBAD-YSZ templates by pulsed laser deposition. Raman scattering spectroscopy shows that the NdBCO film grown at relatively low substrates temperature of 750°C contains some *a*-axis oriented grains as well as *c*-axis oriented grains and an excess cation-disorder between Nd³⁺ ions and Ba²⁺ sites, which result in degradation of superconducting properties with critical temperature (T_c) of ~83 K and critical current density (J_c) of less than 1 MA/cm² at 77 K and self-field. The samples grown at higher temperature ranging from 775 to 800°C are found to have strong c-axis orientation with little cation-disorder, and subsequently, excellent superconducting properties with T_c of 88 ~ 90 K and J_c of 1.2 ~ 1.8 MA/cm² at 77 K and self-field.