Transport Properties of MgB₂ Thin Films Grown by Hybrid Physical Chemical Vapor Deposition Method

Hye-Young Kim^a, Tae-Jong Hwang^a, D. H. Kim^a, W. N. Kang^b

^a Yeungnam University, Gyeongsan, Korea ^b Sungkyunkwan University, Suwon, Korea

We prepared four different MgB₂ films on Al₂O₃ by hybrid physical chemical vapor deposition method with thicknesses ranging from 0.65 μ m to 1.2 μ m. X-ray diffraction patterns confirm that all the MgB₂ thin films are c-axis oriented perpendicular to Al₂O₃ substrates. The superconducting onset temperature of MgB₂ films were between 39.31K and 40.72K. The residual resistivity ratio of the MgB₂ films were between 3.13 and 37.3. We measured the angle dependence of critical current density (J_c) and resistivity, and determined the upper critical field (H_{c2}) from the temperature dependence of the resistivity curves. The anisotropy ratios defined as the ratio of the H_{c2} parallel to the *ab*-plane to H_{c2} perpendicular to the *ab*-plane were in the range of 1.59 to 7.03 and were increased as the temperature was decreased. Some samples showed an increase of J_c and decrease of resistivity when a magnetic field in applied parallel to the *c*-axis. We interpret this angle dependence in terms of enhanced flux pinning due to columnar growth of MgB₂ along the *c*-axis.

Keywords : MgB₂, thin film , HPCVD