소비자 감성 평가를 통한 냉장고 Sound Power Spectrum Guideline

Sound Power Spectrum Guideline for a Refrigerator based on Subjective Evaluation

이진경 * 조경숙 * 이제원 *

Jinkyung Lee, Kyoungsook Jo, Jeawon Lee

Key Words : Sound Power Spectrum (음향 파워 스펙트럼), Satisfaction Index (만족도), Paired Comparison (쌍대비교법), Subjective Evaluation (감성평가).

ABSTRACT

A weighted sound pressure level has been used to evaluate sounds test or sound quality test for a refrigerator up to present but the customer had different satisfactions of refrigerator sounds with different listening position. It means that there was a sound directivity caused by a position of fan or compressor. In this paper, we proposed a sound power spectrum guideline that represents total sound of refrigerator.

1. 서 론

생활 수준이 향상됨에 따라 쾌적하고 아늑한 공간에서 생활하고자 하는 소비자의 욕구는 날로 늘어가는 추세이다. 주거 공간에서의 가전제품의 소음은 이러한 욕구에 부합되지 않는다. 특히 냉 장고의 경우 설치 장소가 주방 및 거실의 실내 공 간에 위치하고 다른 가전제품과는 다르게 사용자 의 의지와 상관없이 On/off 을 반복함으로 소비자 의 불만도를 일으키는 주요 가전제품이다. 이런 소음에 대한 불만도를 없애기 위해 냉장고의 소음 의 레벨을 줄이고자 하는 노력 뿐만 아니라 냉장 고의 음질을 평가하고 이를 향상하고자 하는 노력 이 계속 진행되고 있다. 하지만 냉장고 소음의 측 정하고 음질을 분석함에 있어서 아직까지 음압레 벨(Sound pressure level) 값을 많이 사용하고 있는데 이는 잘못된 평가이다. 냉장고의 경우 fan 이나 Compressor 의 위치 등에 따라 소음이 방 사되는 방향성을 형성하여 소비자의 듣는 위치에 따라 소리의 크기 및 음감에 있어서 많은 차이를 보임에도 불구하고 음압레벨로 평가 할 경우 이런 현상에 의한 소비자 만족도의 영향을 고려 할 수 없게 된다. 이에 냉장고에서 방사된 모든 음향에 너지를 표현 할 수 있는 음향 파워 레벨(Sound power level)을 기반으로 하여 연구를 진행하였 다.

본 연구는 다양한 종류의 냉장고 음향 파워 스 펙트럼 분석을 통하여 일반적인 냉장고의 파워 스펙트럼 패턴을 정의하고 스펙트럼의 변화에 따른 소비자 만족도와의 관계를 소비자 감성 평가를 통하여 도출하였다. 그 결과를 통해 냉장고의 파워를 이용하여 소비자 만족도를 예측할 수 있는 Guideline 을 제시하였다.

2. 소비자 평가 설계

2.1 Sound Power Spectrum Pattern Analysis

파워 스펙트럼은 냉장고의 냉장고의 Compressor 의 종류 및 운전 조건, fan 의 개수 및 장착 위치 등에 따라 달라진다. 하지만 이 모 경우에 대하여 각각의 스펙트럼에 대하여 Guideline 을 제안한다는 것은 불가능한 일이다. 그리하여 우선 냉장고 소음을 대변 할 수 있는 보 편적인 파워 스펙트럼 패턴을 정의하는 것이 필요 하다. 이를 위하여 SBS(Side-by-side), BMF (Bottom mounted freezer) 및 외산 냉장고에 11 개 제품에 대한 파워를 측정하였다. 냉장고 파 워는 가전제품의 국제 음향 파워 측정 규격인 EN 28960 (ISO8960)에 의해 반 무향실 조건에서 제품 후면에 반사판이 설치된 조건하에 5 개의 마 이크로 폰을 이용하여 측정하였다. 측정한 11 개 의 파워 스펙트럼을 분석하여 대부분의 냉장고에 서 나타나는 특징을 가지고 있는 주파수 대역대를 분석하여 냉장고 파워 스펙트럼을 대변할 수 있는 대표 파워 스펙트럼 패턴을 정의하였다.

[†] 교신저자 : 삼성전자 생활가전사업부 E-mail:jjiny.lee@samsung.com Tel:(0.31) 218-5061, Fax:(031) 218-5096

^{*} 삼성전자 생활가전사업부

2.2 평가 음원 녹음 및 평가 설계

2.2.1 평가 음원 녹음

냉장고 음향 파워 측정 시 소비자 평가에 사용할 음원을 위하여 녹음도 실시하였다. 녹음은 파워 측정 조건인 반 무향실, 후면 반사판 설치 조건에서 실시하였으며 냉장고의 전, 후, 좌, 우 높이 등을 변화하면서 녹음하여 녹음한 음원의 스펙트럼이 동일 조건에서의 파워 스펙트럼과 유사하고 음원이 Compressor, Fan, 냉장고 구조 소음등을 모두 포함하는 위치를 선정하여 Dummy head를 허용하여 녹음하였다.

2.2.2 소비자 평가 설계

소비자 평가에 사용 될 평가 음원을 변조 함에 있어서 100 ~ 10kHz 의 대역에 대해서만 음향 파워를 고려 한다고 하더라도 이 대역 내에 있는 1/3 옥타브 밴드의 개수가 21 개로 각각의 밴드에 대한 음원 변조를 실시하여 각 밴드 간의 관계를 평가 한다는 것은 불가능하다. 이에 냉장고 전체 스펙트럼을 몇 개의 구간으로 나누어서 변조를 실시하기로 하였다.

냉장고 스펙트럼의 구간을 나누기 위하여 먼저 냉장고 소음 Source 에 대한 분석을 실시 하였다. 우선 저주파 대역의 소음은 구조에 기인한 소음과 Compressor 소음이 지배적 이였으며 이외에도 Fan 에 기인한 소음이 존재하였다. 고주파 영역의 소음은 주로 Compressor 관련된 소음으로 분석 되었다. 이렇게 분석한 Source 의 결과와 앞서 결 정한 대표 음향 파워 스펙트럼 패턴을 고려하여 전체 스펙트럼을 5 개의 대역으로 나누었고 이는 아래 표 1 에 나타내었다.

표1 Frequency Range of Each Band

Band	Frequency Range	Source	
В1	~350 Hz	저주파 진동음	
B2	~ 700Hz	Comp 소음, Fan 소음	
В3	~ 1,6 kHz	_	
B4	~ 4 kHz	Compressor 소음	
В5	4 kHz~ 10 kHz	Combressor T. a	

이렇게 나눈 5 개의 대역대의 변조 레벨을 결정하기 위하여 벤치마킹에 사용되었던 11 개의 제품에 대한 5 개 밴드의 밴드 파워 스펙트럼 레벨을 계산하였고 계산된 밴드 파워 값은 Fig.1 에 도시하였다. 계산한 결과 모든 제품의 소음레벨을 포함 할 수 있는 변조레벨인 저주파 대역인 B1, B2,

B3 밴드는 ±5dB, 고주파 대역인 B4, B5 밴드는 ± 3dB 로 결정하였다.

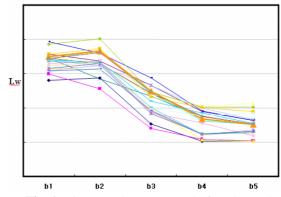


Fig. 1 Fig.1 Band Power Level of Each Band

3. 소비자 감성 평가

3.1 평가 음원 변조

소비자 평가에 사용하기 위한 변조 음원은 5 개 밴드에 대하여 5 인자 2nd order로 설계하였으므 로 전체 41 개의 sound가 된다. 이를 소비자 특 히 주부도 쉽게 할 수 있는 쌍대비교법(Paired Comparison Method)으로 평가를 실시 할 경우 평가 횟수가 41 개 음원의 조합인 820 개의 음원 쌍이 된다. 전체 조합인 820 쌍의 음원 전체을 하 나의 평가 그룹이 평가 한다는 것은 현실적으로 불가능하다. 따라서 평가 자의 숫자를 늘리고 평 가 음원을 반복적으로 평가를 함으로써 전체 음원 을 한번에 평가 하지 못하는 오류를 줄이고자 하 였다. 각각의 음원쌍에 대한 반복 횟수를 5 회로 하여 총 4100 쌍을 평가하고 이를 20 개의 평가 그룹으로 나누어 각 그룹당 205 개의 쌍에 대하 여 쌍대비교를 실시 하도록 소비자 평가를 설계하 였다. 변조된 41 개의 소비자 평가 음원에 대한 음질 지수 범위는 아래 표 2 와 같다.

표 2 소비자 평가 음원의 음질 지수 범위

	Min	Max
Loudness	1.6	2.8
Sharpness	0.706	1.225
Roughness	0.056	0.184
F. Strength	0.098	0.124
Tonality	0.019	0.052

3.2 소비자 감성 평가

소비자 감성 평가는 청력에 이상이 없는 전업 주부로 냉장고를 충분히 사용한 경험이 있는 20 대~50 대의 주부 120 명으로 구성하였다. 냉장고 음원의 레벨이 일반 청음실에서 듣기에는 작은 레벨이므로 Head Phone(SENNHEISER HD600)을 사용하여 수음하는 방법을 사용하였으며 각각의 Head Phone 은 기준 신호로 레벨 보정하여 모든 평가자가 동일한 평가음을 듣고 평가를 할 수 있도록 하였다. 평가는 앞에서 언급한 바와 같이 Paired comparison 방법으로 실시하였고 한 그룹 당 205 개의 음원 쌍을 평가 하였으며 40 개의 음원 쌍씩 5 회에 나누어서 평가를 실시하여 평가 사이 충분한 휴식을 취하게 함으로서 많은 음원으로 인하여 야기될 수 있는 피로감을 최소화할 수 있게 하였다.

3.3 소비자 감성 평가 결과

냉장고 음향 파워 스펙트럼 변화에 따른 소비 자 만족도 결과는 Fig. 2 와 같다. Figure 2 에서 보는 바와 같이 전체적으로 소비자 만족도와 파워 레벨 사이에는 강한 선형의 관계를 나타냄을 알 수 있으며 음향 파워 레벨이 일정 수준보다 높거 나 낮은 구간에서는 레벨변화에 따른 만족도 차이 가 거의 없는 S 자 형태의 관계를 보임을 알 수 있다. 그리고 냉장고 소음의 대부분을 차지하고 있는 파워 레벨의 구간에는 동일한 파워 레벨이라 고 하더라도 15 점 이상의 만족도의 유의미한 차 이를 보이는 것으로 나타났다. 이 차이는 음향 파 워의 balance 즉 음질에 의해 나타나게 되는 만족 도 차이로 특히 고주파와 저주파의 Balance 로 표현되는 Sharpness 의 영향으로 분석 되었다. RSM 분석 결과 각 밴드 파워 레벨에 대한 소비 자 만족도는 식 (1)과 같이 표현된다. 또한 소비 자들이 불만 없이 받아 들일 수 있는 만족도 수준 은 65로 분석되었다.

소비자 만족도 = 231.8- $\alpha \times b1 + \beta \times b2 - \gamma \times b3$ + $\delta \times b4 - \epsilon \times b1^2 - \zeta \times b2^2 - \eta \times b3^2$ - $\theta \times b4^2 + b1 \times b2 + \iota \times b1 \times b3$ 식(1)

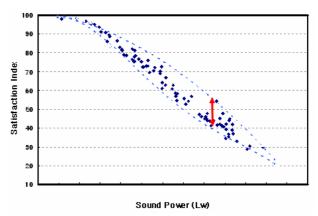


Fig. 2 소비자 만족도와 Sound power level 과의 관계

3.4 제품 평가

이 분석 결과를 바탕으로 현재 생산되고 있는 A, B, C 제품에 대한 소비나 만족도 결과를 평가하였고 그 결과는 Fig. 3 에 도시하였다.

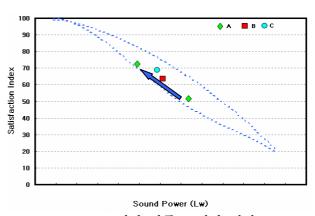


Fig. 3 소비자 만족도 평가 결과

A, B, C 3개의 제품에 대하여 만족도를 평가한 결과 B, C 제품인 경우 소비자들이 받아 들일 수 있는 만족도 수준인 65 를 만족하는 반면 A 제품인 경우 만족도가 50 으로 파워 레벨과 음질의 개선이 필요한 것으로 나타났다. 이를 개선하기 위하여 우선 A 제품에 대하여 음향 파워 스펙트럼을 분석하고 소비자의 불만을 야기 시키는 주파수 대역 대를 찾았다. 이 주파수 대역의 소음을 발생시키는 냉장고의 요소 부품을 분석한 후 요소부품의 개선 및 소음 전달 경로의 개선 등을 통하여 제품 소음을 개선하였다. 개선 결과의 검증을 위하여 음향 파워를 이용한 만족도 계산결과 72으로 A 제품에 대한 소비자 만족도가 향상되었음을 확인하였다.

4. 결론

본 연구에서는 음향 파워 스펙트럼 Guideline을 제안하기 위하여 먼저 11 개 다른 종류의 냉장고에 대하여 음향 파워를 측정하고 이를 분석하여가장 보편적인 냉장고 음향 파원 스펙트럼 패턴을정의 하였다. 또 Guideline 을 제안함에 있어서소비자 평가를 통한 만족도를 고려하기 위하여 음향 파워 스펙트럼과 패턴이 유사한 지점을 선정하여 녹음을 실시하였다. 정의된 스펙트럼 패턴과 냉장고 소음 Source 의 관계 분석을 통하여 음원 변조를 위한 소음 구간을 결정하고 소비자 평가를위한 RSM 실험 설계를 실시하였다. 설계된 방법으로 소비자 평가를 실시하여 전체 음향 파워 레벨과 각 밴드의 크기와 만족도 사이의 상관관계분석을 통하여 만족도 값을 예측할 수 있는 식을도출하였다.

본 연구를 통하여 냉장고의 음질이나 만족도를 평가 함에 있어서 지금까지 사용되어 왔던 음압 레벨을 이용한 방법이 아닌 음향 파워로 Spectrum guideline 을 제안 함으로서 냉장고 전 체에서 방사 되는 소음을 고려할 수 있게 되었고 제안된 Guideline 을 이용하여 향후 냉장고에 대한 소비자 만족도 결과를 예측 할 수 있게 되었다.

참고문헌

- (1) Han, J. O., Koo, H. M., Choi, W. S. and Kim, J. B., 2003, "A Method of Noise Reduction and Improvement in Sound Quality for a Product with the Auto Louver", Proceedings of the KSNVE Annual Autumn Conference, pp.1073~1075.
- (2) Joo, J. M., 2004, "Noise and Vibration of the Digital Appliances", Transactions of the Korean Society for Noise and Vibration Engineering. Vol.14, No.6, pp.15~22.
- (3) Lee, J. K., Lee, J. W., and Joo, J. M., 2005, "Propose Tonal Noise Standard for Air-conditioner based on Customer's Sensory Evaluation", Proceedings of the KSNVE Annual Spring Conference, pp.?~?.
- (4) Kim, H. J., 2006, "Design Optimization by the Correlation between the Design Parameter and the Sound Quality of Small Turbo-fan", Transactions of the Korean Society for Noise and Vibration Engineering. Vol.16, No.5, pp.485~494.
- (5) Zwicker, E., and Fastle, H., 1999, Psychoacoustics: Fact and Models, 2nd edition, Springer.
- (6) Miyake, S., 2004, Fluctuation Engineering, Sigma Press, Seoul.
 - (7) H.A. David, The Method f Paired Comparisons
 - 2nd Edition, OXFORD University Press
 - (8) 원태연 회 "통계조사 분석" SPSS 아카데미