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Abstract

Phosphorylation is one of the most important post translational modifications which regulate the activity of
proteins. The problem of predicting phosphorylation sites is the first step of understanding various biological
processes that initiate the actual function of proteins in each signaling pathway. Although many prediction
methads using single or multiple features extracted from protein sequences have been proposed, systematic
data integration approach has not been applied in order to improve the accuracy of predicting general
phosphorylation sites. In this paper, we propose an optimal way of integrating multipie features in the
framework of multiple kernel learning. We optimally combine seven kernels extracted from sequence,
physico-chemical properties, pairwise alignment, and structural information. Using the data set of
Phospho.ELM, the accuracy evaluated by 5-fold cross-validation reaches 85% for serine, 85% for threcnine,
and 81% for tyrosine. Our computational experiments show significant improvement in the performance of
prediction relative to a single feature, or to the combined feature with equal weights. Moreover, our systematic
integration method significantly improves the prediction preformance compared with the previous well-known

methods.
1. Introduction similarity relationshlip bgtween two protein seq.uence?s
such as kernel functions, in order to be used as an input in
Post transiational modifications (PTMs) are the the machine learning algorithms for classification.
permanent or reversible processes which make proteins NetPhos [3], a widely used web server for predicting
function correctly. Most proteins are subject to general phosphorylation sites, is a predictor based on
modifications including proteolytic cleavage, protein neural networks. NetPhos uses a sequence window

folding, and covalent modification. Phosphorylation is one
of the most significant PTMs because it regulates the
activity of proteins, as well as occurs in over 30% of all
proteins in the eukaryotic cell [1]. The specific animo acids
of serine (S), threonine (T), and tyrosine (Y) in the primary
peptide are the major targets for phosphorylation.
Accurate prediction of phosphorylation sites is an
important issue in systems biology since cell signaling
network is regulated by intricate phosphorylation relay.
Also it requires a lot of work to identify phosphoproteins
using high-throughput techniques such as mass
spectrometry [2]. In the problem of predicting
phosphorylation sites, one of the most critical factors in
deciding prediction accuracy is a way of extracting
significant features from the protein sequences because
the sequence motifs around phosphorylation sites are
highly variable. The extracted features should be
represented as either a numerical vector or generalized
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around a candidate site as an input to the neural network
classifier. Another web-based predictor, Scansite [4],
predicts the phosphorylation sites using the position-
specific scoring matrices for each motif constructed from
peptide library. Unlike the two methods using only the
sequence features, DISPHOS [5] uses heterogeneous
features extracted from sequence, physico-chemical
properties, and structure. DISPHOS collects the multiple
features in a single feature vector, and then performs
prediction using logistic regression after the preprocessing
steps of feature selection and dimensionality reduction.
Although DISPHOS does not use systematic data
integration approach, it shows the significantly improved
performance over the other two methods using only the
sequence information.

In our previous work [8], we proposed an optimal way of
integrating multiple features in the framework of multiple
kernel learning in order to predict general phosphorylation
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sites, without specifying the kind of protein kinases. In our
multiple kernel learning approach, each feature was
represented via a kernel function implying generalized
similarity, and then the heterogeneous kernels are
optimally combined using a convex optimization [6]. Here,
to develop a more discriminative prediction method, we
present four different kinds of kernels which are extracted
from sequence, physico-chemical properties, pairwise
alignment, and structural information. Using the data set
of Phospho.ELM [7], our method achieves the accuracy of
85% for S, of 85% for T, and of 81% for Y. Our
computational experiments show that the optimal data
integration method based on kernels significantly
improves the prediction performance compared with the
previous methods.

2. Kernels for prediction of phosphorylation sites

In the problem of classifying a protein sequence into its
functional classes, the bottleneck in prediction accuracy is
a way of extracting useful features from the protein
sequence since the raw sequence cannot be used as an
input data in classifiers. The extracted features should be
represented as either a numerical vector or a generalized
similarity relationship between two protein sequences.
Since it is impossible to find a feature extraction method
minimizing information loss, one should carefully choose
one of available methods or combine them. Combining
multiple features or integrating multiple data sources is a
central issue in bioinformatics. In recent years, numerous
studies have attempted to develop systematic
methodology for biological data integration, including
Bayesian and kernel methods. However, those principled
frameworks have not been widely used in a variety of
biological applications because of their difficulties with
implementation. Instead, heuristic methods have been
more frequently applied in order to combine multiple
features, including majority voting and single
concatenated feature vector. Although the heuristic
methods are relatively easier to implement, they are lack
of optimality in combination. In order to integrate multiple
features extracted from a protein sequence in the
framework of muttipie kernel learning described in Section
3, we introduce seven kernel functions designed for
predicting phosphorylation sites, which can be classified
into the four types of kernels: sequence, physico-chemical
properties, pairwise alignment, and structural kernels.

2.1. Kernels for protein sequences

The main assumption on predicting phosphorylation sites
is that the amino acid sequence near the candidate site of
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S, T, or Y determines its phosphorylation. Based on it, we
propose the following kinds of feature vectors constructed
exclusively from the sequence information: (1) amino acid
composition; (2) dipeptide composition; (3) orthogonal
binary representation. In the prediction of phosphorylation
sites, we assume that the distribution of amino acids of
positive sites is different to that of negative sites. The
composition of the ith amino acid /(i) is given by

fE@=N"(@),

where N“ (i) is the total count of the iith amino acid in
the sequence window centered at the candidate site. Then,
the feature vector X, for the fth site is given by

x, =ML Q)... Q)Y

where f,”(i) is the composition of the ith amino acid
in the sequence window centered at the fth site.

The dipeptide composition is an extension of amino acid
composition, where we add the information on the local
order of amino acids. The dipeptide means two
consecutive amino acids in a protein sequence. Twenty
different amino acids lead to 400 combinations of
dipeptide. In practice, it is proved that the dipeptide
composition has superior predictive power, compared to
the amino acid composition [9]. The composition of the
ith dipeptide f“()is given by

FE@D=N*G),

where N“(i)is the total count of the ith dipeptide in
the sequence window centered at the candidate site. Then,
the feature vector X, for the fth site is given by

X, =[£CW)f“Q2)... 44007,
where f,%(i)is the composition of the ith dipeptide in
the sequence window centered at the fth site.

The orthogona!l binary representation is a standard
feature extraction method in prediction of phosphorylation
sites since it considers position specific information of
amino acids within the sequence window, as well as is
easy to implement. For each position of a sequence
window, the amino acid of the position is represented as a
20-dimensional vector of zeros with a single one for the
residue observed at the position. We have applied it to a
sequence window with a length of 25 residues, resulting a
24X20=480 dimensional binary vector by exciuding the
central residue of S, T, or Y.
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2.2. Kernels for physico-chemical properties

Itis well known that the specificity of protein kinases is
influenced by acidic, basic, or hydrophobic residues
adjacent to the phosphorylated sites [1]. To incorporate
this biological knowledge, we consider 121 physico-
chemical properties in order to represent a sequence
window by a 121-dimensional feature vector based on
amino acid composition. We use the AAindex database
[10] to get the values of physico-chemical properties for all
20 amino acids, which are thought to be related to protein
functions. The average value of the Zth physico-chemical
property is defined by

p(i) = Z_:Ai(j)f (),

where A4 (j) is the value of the Jjth amino acid of the
I th physico-chemical property and f“(j) is the
composition of the jth amino acid. The feature vector
X, forthe fth site is given by

X, =[g, g, (2)...0, 12D,
where @,(/) is the average value of the ith physico-
chemical property in the fth site.

2.3, Kernels for pairwise alignment

The fundamental assumption that makes it possible to
predict phosphorylation sites from protein sequences is
the existence of multiple sequence motifs for kinases near
the phosphorylation sites. However, it is difficult to directly
identify such motifs because of the sequence divergence.
We have proposed several kernel functions which extract
the underlying motifs indirectly by utilizing the scores of
global pairwise alignments [9]. For the problem of
predicting phosphorylation sites, we first perform
hierarchical clustering on the training data set of
phosphorylation sites to make several clusters, assuming
that all sequences belonging to the same cluster share
common functional motifs. For clustering, we make a
hierarchical tree on sequence windows of positive sites
using ward linkage algorithm. For pairwise distances, we
calculate the Jukes-Cantor distance between each pair of
windows after aligning them with the Needleman-Wunsch
algorithm [11]. Then, we make clusters from the
constructed hierarchical tree by specifying the number of
clusters. The number of clusters is chosen as 200. Next,
we select randomly a representative sequence from each
cluster and convert a target sequence into the
corresponding numerical feature vector by computing the
scores of global pairwise sequence alignment between
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the target sequence and the chosen representative
sequences. In the step of performing global pairwise
sequence alignment, we assume that the true functional
motifs of the target sequence will be properly aligned with
the comresponding motifs of at least one of representative
sequences if the target sequence contains a true
phosphorylation site. To increase discriminative power, we
perform the same procedures to the training data set of
negative sites. A d-dimensional feature vector X, for the
tth site has the form

x, =[x, )x, (2)...x, (DT,

where Xx,(i) is the score of the Needleman-Wunsch
algorithm between the f th sequence and the i th
representative sequence. Note that d is equal to the total
number of selected representative sequences of the
training data set of positive and negative sites, and
therefore 400. The gap penalty is set to be -3 and the
BLOSUMS50 matrix is used as a substitution matrix. The
assumption on using global pairwise alignment may be
incorrect if the functional motifs are localized. In this case,
the Smith-Waterman algorithm can be used to compute
the scores of local pairwise sequence alignment [12]. The
general procedure is equal to that of the above method
using global alignment except for using the Smith-
Waterman algorithm in the step of constructing feature
vectors.

2.4. Kernels for protein structure

Protein kinases are required to be in close contact with
the target sites for phosphorylation. If the target site is
within inaccessible regions such as the core hydrophobic
domain, steric hindrance would prevent the binding of
kinases on the site. To incorporate this structural basis
with the problem of predicting phosphorylation sites, we
consider three concepts of inaccessible regions:
(Mransmembrane, (2)protein secondary structure (helix,
sheet, and loop), (3)intrinsic disorder. We construct a
feature vector by exploiting the .outputs from three
different kinds of predictors of transmembrane helices,
secondary structure, and intrinsic disorder regions. The
output is represented in a 1-of-K coding scheme where
the output vector has the length of K such that if the
output value is k, then all elements of the vector are zero
except the kth element taking the value 1. For prediction
of transmembrane helices in proteins, three prediction
methods of TMHMM [13] , Sosui {14] , and HMMTOP [15]
are employed. Next, we also use three predictors of
NNPREDICT [16], SOPMA [17], and HNN [18] for the
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prediction of secondary structure. Finally, two more
predictors of GLOBPLOT2 [19], DISEMBL {20] are used to
predict intrinsic disorder. Since DISEMBL gives three
prediction results according to their different definitions of
intrinsic disorder, the total number of predictors is equal to
four. The number of output values, K, in a 1-of-K coding
scheme is two except the outputs of predictors for
secondary structure, which take the value 3. The feature
vector combining the prediction results of three
inaccessible regions is constructed by simply
concatenating all output vectors.

3. Muttiple kernel learning

Multiple kernel learning provides an optimal way of
integrating information extracted from heterogeneous data
mainly in the supervised learning problems. Integrating
information derived from different types of data can be
reduced to the problem of combining kernel functions
linearly in an optimal way. The optimal kernel combination
can be formulated as a convex optimization problem in the
framework of support vector machines (SVM) [6]. In
multiple kernel learning, the problem of finding optimal
kernel weights X;can be formulated into the following
semi-infinite linear program (SILP) [21] which can be
solved efficiently by using standard linear program (LP)
solver and standard SVM implementations.

maximizes g ¢
subject to w0, Z 1
Fa]

3 w55y > fforall o € R*
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To solve the SILP, we use an exchange method which is
one of the well-known numerical algorithms for SILP. The
more detailed description on multiple kernel learning is
available in [8]. A sequence window centered at S, T, or Y
residue enters a phase of kernel construction fully
described in Section 2. The seven feature vectors
extracted from the information of sequence, physico-
chemical properties, pairwise alignment, and structure are
converted into the corresponding kernel function by using
the RBF kernel. Then, the multiple kernel functions are
linearly combined with the optimal kernel weights learned
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from the exchange method [8]. The optimally combined
kernel function is applied into the standard SVM solver as
a single kernel. The predicted class label on
phosphorylation site is obtained from the trained SVM
classifier with the combined kernel function.

4, Results

4.1. Datasets

A key problem for collecting positive and negative
phosphorylation sites is to define a reliable set of training
and test data. Although there exist high-throughput
methods experimentally confirming positive
phosphorylation sites, it is extremely difficult to verify
negative sites. We considered all sites of S, T, and Y
without annotations of phosphorylation as negative sites.
In order to reduce false negative, we removed all negative
sites with high sequence identity with positive sites. We
obtained the positive and negative sites by extracting
sequence windows with a length of 25 residues centered
atS, T, or Y from Phospho.ELM (ver 4.0, May. 2006) [7].
We excluded all seguence windows of less than 25
residues. To remove redundancy in the positive sites, we
eliminated all positive sites with over 50% sequence
identity (30% for S) in the pairwise alignments without
gaps. The negative sites may contain false negative,
which means un-annotated positive sites. We discard all
negative sites with over 30% sequence identity with non-
redundant positive sites. In the classification of
phosphorylated sites, the numbers of data in two classes
are unbalanced because there are much more negative
sites than positive sites. This unbalance might cause a
poor performance in prediction. To reduce the number of
negative sites, we grouped all negative sites into clusters
whose number is equal to about 1.5 times the number of
non-redundant positive sites. We selected a single
representative sequence window for each cluster. The
summary of the resulting data sets is shown in Table 1.
The performance measures was described in [8].

Fable 1
The mumber of positive and negative phosphorylation sites.

Number of positive sites Number of negative sites

s 1219 1529
T 592 K]
Y 1029 1544

4.2. Experimental results

The user-provided parameters of our prediction system
were chosen by applying 5-fold cross-validation. The RBF
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kernel widths y for the seven feature vectors were
selected in such a way that the SVM classifier trained with
a single RBF kernel maximizes the accuracy of test data
sets in 5-fold cross-validation. During the training and
testing, we fix the regularization parameter C to 1. We first
performed computational experiments which study the
performance of the optimally combined kernel compared
to the single kernel constructed from the seven feature
vectors independently. Then, we compared the
performance of the optimal kernel combination to the
kernel combination with equal weights. We finally
compared the performance of our method to previous
works for predicting phosphorylation sites. The optimally
combined kerne! outperforms the best result using only
one kernel function. The improvement takes place in both
accuracy and MCC. The accuracy increases by 1.86%
from 82.95% to 84.81% for S, by 1.17% from 83.34% to
84.51% for T, and by 2% from 78.81% to 80.81% for Y.
The improvement in MCC corresponds to a change by
0.0395 from 0.6421 to 0.6816, by 0.0241 from 0.6533 to
0.6774, and by 0.0424 from 0.5536 to 0.5960. To confirm
the significance of the learned kernel weights, we gave
the equal kernel weight of 1/7 to the all single kernel
function. The performance of the optimal kernel weights is
better than of the equal kernel weights. The accuracy and
MCC of the equal kerne! weights were 84.41% and 0.6731
for S, 83.69% and 0.6592 for T, and 80.10% and 0.5806
for Y. The kernels of global and local alignment
constructed from the scores of pairwise alignment yielded
the best individual performance. The result supports the
underlying assumptions of alignment kernels that the
functional motifs with large sequence variation can be
captured via the score of pairwise alignment, and the
representative sequences randomly chosen from the
clusters can identify the highly diverse motifs. Among the
sequence kernels, the kernel constructed from the feature
vector of orthogonal binary representation gave the
highest performance, reflecting the fact that it fully uses
the positional information of amino acids. The kernels
based on physico-chemical properties and protein
structure showed the marginal performance relatively.
However, when the two kernels were removed from the
list of kernels for multiple kernel learning, the performance
decreased significantly compared to all seven kernels.
The performance of our method based on multiple kernel
learning is compared with the two other previous methods,
using the data set of Table 1. First, the accuracy of
NetPhos reaches 68.45% for S, 70.60% for T, and
66.88% for Y. The MCC is 0.3755 for S, 0.3807 for T, and
0.3169 for Y. Next, the accuracy of DISPHOS reaches
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84.71% for S, 80.81% for T, and 78.38% for Y. The MCC
is 0.6800 for S, 0.6043 for T, and 0.5557 for Y. This result
shows that the discriminative method optimally combining
multiple features outperforms the method using single
feature (NetPhos) or equally combining multiple features
(DISPHOS).

5. Discussion

We described a discriminative method for predicting
phosphorylation sites of proteins which attempts to find a
decision boundary in a feature space constructed from
multiple heterogeneous kernel functions. The algorithm
based on SVM and SILP finds the optimal kernel weights
for the linear kernel combination in order to map the
heterogeneous input spaces implicitly into the optimally
combined feature space. The computational experiments
show significant improvement in the performance of
prediction relative to a SVM classifier with the single
kernel, or relative to the kernel combination with the
equally fixed kernel weights. Our method has three main
features that distinguish it from the previous works on
phosphorylation prediction. First, kernels provide a highly
flexible framework which incorporates heterogeneous
features naturally existing in kernels. The four different
types of features including sequence, pairwise alignment,
physico-chemical properties, and protein structure are
represented within the same mathematical object of a
kernel function. The identical representation gives an
opportunity to integrate features efficiently. Second, the
multiple kernels constructed from the heterogeneous
features are combined optimally in the framework of SVM
and SILP. The optimal criterion is given by maximizing the
1-norm soft margin in SVM. Finally, the algorithm
automatically performs feature selection, finding optimal
kernel weights. The nonsupport kernels with zero weights
are eliminated when the single kernels are linearly
combined. We also do not need to consider dimensionality
reduction for a high dimensional feature vector because
kernels implicitly assume very high dimensionality.
Although the method based on multiple kernel learning
offered the state-of-the-art result for predicting
phosphorylation sites, there remain two basic limitations in
need of further research. The first difficulty in learning
SVM classifiers is the unreliable negative training set. We
considered the un-annotated sites of S, T, and Y as
negative sets, where the sites which have over 30%
sequence identity with the annotated positive sites were
removed. The second limitation is the fact that the overall
performance of the optimally combined kernel strongly
depends on the single kernel showing the best
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performance. Therefore, we need to develop more
discriminative kernels reflecting the characteristics of
sequence divergence and diversity in phosphorylation
sites.
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