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Abstract
Gaussian process classifiers (GPCs) are fully statistical kernel classification models which have a
latent function with Gaussian process prior. Recently, EP approximation method has been proposed to

infer the posterior over the latent function.
outliers potentially,
hyperparameter updating until convergencs.

1. Introduction

In many real-world classification problems the labels
provided for the data are noisy. There are typically two
kinds of noise in labels. Noise near the class
boundaries often occurs because it is hard to
consistently label ambiguous data points. Labelling
errors  far from the class boundaries can occur
because of mistakes in labelling or gross errors in
measuring the input features. We call labelling errors
far from the boundary, outfiers. While many methods
have been proposed for dealing with noisy class
boundaries, far less attention has been placed on
dealing with classification outliers. In this paper we
present a Bayesian kernel classification algorithm
which is robust to outliers.

GPCs are a Bayesian kernel classifier derived from
Gaussian process priors over functions which were
developed originally for regression [1],[2],(3]. In
classification, the target values are discrete class
labels. To wuse Gaussian processes for binary
classification, the Gaussian process regression model
can be modified so that the sign of the continuous
latent function it outputs determines the class label.
Observing the class label at some data point
constrains the function value to be positive or negative
at that point, but leaves it otherwise unknown. To
compute predictive quantities of interest we therefore
need to integrate over the possible unknown values of
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It can have a special hyperparameter which can treat
In this paper, we propose the outlier robust algorithm which alternates EP and the
We also show its usefulness with the simulation results.

this function at the data points. Exact evaluation of
this integral is computationally intractable. However,
several successful methods have been proposed for
approximately integrating over the latent function
values, such as the Laplace approximation [1],
Markov Chain Monte Carlo [3], and variational
approximations [2]. Opper and Winther (2000) used
the TAP approach originally proposed in statistical
physics of disordered systems to integrate over the
latent values [4]. The TAP approach for this model is
equivalent to the more general Expectation
Propagation (EP) algorithm for approximate inference
[5]. Minka's formulation [5] has a special
hyperparameter which can potentially be used to deal
with outliers. Since outliers can be a big obstacle to
learning, in this paper we propose an outlier robust
learning algorithm based on EP for Gaussian process
classification.

The paper is organized as follows. Section 2
introduces Gaussian process classification. In
section 3, we introduce the EP/TAP method for
approximate inference. In section 4, we derive the
algorithm for outlier treatment. In section 5, we show
experimental results on both synthetic and real data
sets. In section 6, we discuss our approach and
future work.

2. Gaussian Process Classification
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Let us assume that we have a data set D of data

points Xi with binary class labels % € {-1.1}.

to find the correct class label for a new data point X,
We do this by computing the class probability

We assume that the class label is obtained by

transforming some real valued latent variable f, which

is the value of some latent function fi) evaluated at

5(. We put a Gaussian process prior on this function,

meaning that any number of points evaluated from the
function have a multivariate Gaussian density (see
[10] for a review of GPs). Assume that this GP prior is
parameterized by € which we wil call the

hyperparameters. We can write the probability of
interest given ©as: ‘
plEl%, D.6) = [ piglf, Op(fID, %, €)df

The second part of Eq 1 is obtained by further
o [fifa-- fn],

latent function at the data points.

integration over the values of the

(2)

where P(f1%,1,0) = p(f, £1%. X, ©)/p(f|X,0) 4nq

PIUD.O) <Y I X, Opi1X,0) - ([[ptulfe NlprX.6)

dl
The first term in Eq 3 is the likelihood for each
observed class given the latent function value, while
the second term is the GP prior over functions
evaluated at the data. Writing the dependence of fon
X implicitly, the GP prior over functlons can be written

pifiX,0)

{2my

.(4)
where the mean H s usuaHy assumed to be the zero
vector O and each term of a covariance matrix 4 is

a function of Xi and Xi, e, ©Xi:Xj)
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One form for the likelihood term P{¥:/i:©) which

relates J(Xi) monotonically to probability of ¥ = +1,

is

‘l

..T v dz

P'?Mf ‘_))

] wlo exp(-
var /- (5)

Other possible forms for the likelihood are a sigmoid
1/ (1texp(~yif(xs)))

= orf (g f (%4 ))

function a step function

H{y:if(x:)), and a step function with a labelling error

e+ {1~ 2H{yfx:)}  |n this paper we use the step
function with a labelling error which was aiso used in

[51.

since P(fID.©) in Eq 3 is intractable due to the

nonlinearity in the likelihood terms, we use an
approximate method. Laplace method, variational
method, Markov Chain Monte Carlo method was used
in [1], [2], and [3], respectively. Expectation
propagation, which is described in the next section,
was used in [4] and [5].

3. EP for GPC
We describe EP for GPC referring to [4],[5],[7]. The
latent function f plays the role of the parameter

$Wphi$ above. The form of the likelihood we use in

the GPC is
yuif!) """""" i - ztﬁlllyefa (6)
where H{z) = 1jf > 0, and otherwise 0.

The hyperparameter, € in Eq 6 models labeling error

The EP algorithm approximates the posterior

outliers.
pf1D) = p(Eip(DIF)/p(D) 45 a Gaussian having the
form 4} ~N(mg, V) where the GP prior

p(t) ~ AN{0.C) nag covariance matrix C with elements

Ci defined by the covariance function
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. . . 1 & .
Cj o €%, %41 T expd -3 Z;ll,,,d,,,ifg“;.1';f’j}» oy b bl )
T . O

where &5 is the "¥th element of X¢, and

{ pIh w32 S T T
d{z m} vvvvv (g - 2} if 2™ is continous;

=8zl 27 if 2™ iy discrete,

(8)

and %27 is a Kronecker delta function.

EP tries to approximate P01+ pEY/pIDIILL p(if)

i T B 3 N
approximated by filf) = siexplog-(fi - mi®) g

this initial setting, we can derive EP for GPC by
applying the general idea described above. The
resulting EP procedure is virtually identical to the one
derived for BPMs in [5]. We define the following
notation‘}:

- diag{e,... ),

Wi ~‘5i .
where #' and fi' are ones obtained from a whole set

except for Xi. The EP algorithm is as follows which
we repeat for completeness——-please refer to [5] for
the details of the derivation. After the initialization

oS Ty 0, Ay = Cly

the following process is performed until all (7%, %%, 8}

converge:

Loopi = 0,2, . n:

{11 Remove the approximate density & {for
hy 4
(2} Recippute part of the now posterior: 7 =

a 1 (1-200(=0.15 1
LIV wPeTy s v
density function,

ith data peint) from the posterior
ey

to get an ‘old’ posterior: hY - 3]

{1~ 2emrf(z}

k5 Mg, where ord l| 1 is a eunmlative normal

R N IR N T Znj Ly lz\,t*(p "1“
, mn&h e mpullm,lhx uew posterior: A s {Cr L

my X\

X Ayt
1

*\';’ For iHl By =

lA‘ T

Our approximated posterior over the latent values is:
) ~ N{Ca, A 9)

|

1 ding(iyy ooy i)

means a diagonal matrix whose
diagonal elements are 1. .. Similarly for
diag{v)

i,
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------ Syieixg, x) {or Q= Cdiag(y)),

<)
where Cy =

The approximate evidence can be obtained in the
same way as for BPMs:

PYX, 0 & expi B/ H~<
(10),
2
- 4 Iy my .
where 2 Ay e X v The approximate

evidence in Eq 10 can be used to evaluate the
feasibility of kernels or their hyperparameters to the
data. But, it is tricky to get a updating rule for the
hyperparameters from Eq 10. In the following section,
we derive the algorithm to find the hyperparameters
automatically based not on Eq 10 but a variational
lower bound of the evidence [8]. Classification of a

new data point X can be done according to

argmiaxp{¢ix) = sgn{
¥

4. Outlier Robust Learning Algorithm

We derive an algorithm that learns the labelling error
hyperparameter, €, and is robust to outliers. Our
algorithm is based on the EP approximation mentioned
above, and described in more detail below. The goal is

to find € and other model hyperparameters to
maximize the evidence PIYIX. ¢} We put
©:=:0 1»{5}

and ecx:tv = {1‘0 v] v } {l p = l “‘ " d}

The following procedure is iterated until convergence
after initializing € with a small value:

1. EP iterations are performed
hyperparameter € (see section 3).

given the
As a result of EP,

the posterior #T12.©} is approximated as a Gaussian
density
q(f) ~ N(Ce, A}

{urL

where s 4 Oy Cdiag(y))

«a and A are obtained from EP.

2. Using q(f;
evidence by Jensen's inequality:

, we form a lower bound for the log
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(Yif, eipfiX.0 3
logp(YiX,0) > / () o }’—Ef-i%"rfL—— df
£}

The only term in the lower bound that depends on €

f,e)df 5o we optimize £ with
respect to €.

Fow Z/'I(fe‘f! bog plyei i, €) df;

Now, this is easy to compute in terms of erf functions
(cumulative normal density functions). Define

wi [ H(yif) dfs = orligahe/ VXD where

[~ N{hi N} then,

Although we have focused on learning the outlier
model €, in step 2, the other hyperparameters of the

covariance function . are also optimized by taking

some gradient steps. In fact, the above algorithm is a
form of approximate EM algorithm [9] with EP in the
E-step and the labeling error hyperparameter updating
in the M-step.

5. Simulation Results

We applied the proposed algorithm to a real world
data set. We used New Thyroid data set which is from
the UCI Machine Learning Repository?. New Thyroid
data set has 5 continous variables, 3 (reduced to 2)
classes, and 215 data points. New Thyroid daa set
originally had three classes, “‘normal'’, “‘hyper" and
“hypo'", but we created a binary classification problem
by grouping hyper and hypo into ““not normal'. Among
215 data points, 194 and 21 data points are selected
as a training set and a test set, respectively.

We made outliers in a training set artificially with rates
0, 0.52, 1.55, 2.58, 3.61, 4.64 %. We applied EP with
€= U and the proposed algorithm. Table 1 shows

2 Available from http://www.ics.uci.edu/~mlearn/
MPRepository.html
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approximate log evidences®, and test set error rates
for each of algorithms and each of labeling error rates.
In Table 1, ‘lab. err.', “for.', “prop.' represent artificial
labeling error rates, the former algorithm (EP with
It shows EP with

but the proposed algorithm works robustly with outliers.
EP with €=U worked quite badly especially in the
cases that the labeling error is high. The proposed
algorithm outperformed EP with ¢ == { in senses of
log evidence and test error. Interestingly, the labeling
errors € estimated from the proposed algorithm
exactly matched the actual labeling errors. We tried
0.01, 0.02 and 0.03 as initial values of € in the
proposed algorithm, and got the same result.

lab. err. log p{ D} Test err. (%)
%) for. | prop. | for. | prop.
0 ~30.32 123032 | 4.76 | 4.76
(.52 <5162 | -36.46 | 14.29 | 476
1.55 -62.85 | -45.20 | 9.52 | 476
2.58 S112.0 ) -52.13 | V143 | 476
3.61 -133.9 | -58.90 | 7143 | 476
4.64 -144.3 | -65.06 | 7143 | 4.76
Table 1 Comparison of the former and proposed
algorithms

6. Discussion

We have proposed an algorithm for outlier robust
Gaussian process classification. This- algorithm is an
approximate EM algorithm which updates a fabeling
error hyperparameter. The experimental results show
that an outlier model is better than a normal model
when there are outliers in data sets.

The notion of an outlier is relative to the complexity of
the model. If the model is very complicated, it may not
have any outliers in the sense that the model can fit all
data points easily. Since the complexity of the model
and the need for an explicit outlier model are closely
related, this poses a challenging set of issues for
future work in model selection.

¥ The approximate log evidence was obtained from Eq
10 and means the model is better as its log evidence
is higher.
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